
Noname manuscript No.
(will be inserted by the editor)

ADS: The Adaptive Data Series Index

Kostas Zoumpatianos · Stratos Idreos · Themis Palpanas

the date of receipt and acceptance should be inserted later

Abstract Numerous applications continuously pro-

duce big amounts of data series, and in several time

critical scenarios analysts need to be able to query these

data as soon as they become available. This, however,

is not currently possible with the state-of-the-art index-

ing methods and for very large data series collections.

In this paper, we present the first adaptive indexing

mechanism, specifically tailored to solve the problem

of indexing and querying very large data series collec-

tions. We present a detailed design and evaluation of

our method using approximate and exact query algo-

rithms with both synthetic and real datasets. Adaptive

indexing significantly outperforms previous solutions,

gracefully handling large data series collections, reduc-

ing the data to query delay: by the time state-of-the-art

indexing techniques finish indexing 1 billion data series

(and before answering even a single query), our method

has already answered 3 ∗ 105 queries.

1 Introduction

Data produced in the form of sequences of values are

omnipresent. Such data can be networking informa-

tion, web usage data, scientific data (e.g., electrocar-

diograms, weather data, etc.) as well as financial data

(e.g., stock market data), to practically any kind of data

series [33,60,49,44,25]. A common characteristic is that

analysts need to examine the sequence of values (i.e.,

K. Zoumpatianos
University of Trento, Trento, TN, Italy
E-mail: zoumpatianos@disi.unitn.eu

S. Idreos
Harvard University, Cambridge, MA, USA
E-mail: stratos@seas.harvard.edu

T. Palpanas
Paris Descartes University, Paris, France
E-mail: themis@mi.parisdescartes.fr

the data series) rather than the individual points inde-

pendently. However, for reasons that we describe in this

section, this type of analysis is particularly expensive,

making interactive exploration of data series difficult.

Big Data Series Collections. Informally, a data se-

ries is a sequence of values ordered along a dimension

(time for time-series). Recent advances in sensing, net-

working, data processing and storage technologies have

significantly eased the process of generating and col-

lecting tremendous amounts of data series at extremely

high rates and volumes. In this way, there has been a

significant interest in the data management community

towards analyzing data series with the least possible

processing and storage cost [42,57,10,46,16,17].

The Data to Query Gap. For big data exploration,

it is prohibitive to rely to full sequential scans for every

single query, and therefore, indexing is required. The

target of indexing is to make query processing efficient

enough, such that the analysts can repeatedly fire sev-

eral exploratory queries with quick response times.

However, we show in this paper that the amount of

time required to build a data series index can be a sig-

nificant bottleneck; Figure 1 shows that it takes more

than a full day to build a state-of-the-art index (iSAX

2.0 [11]) over a data set of 1 billion data series in a

modern server machine. The main cost components of

indexing are reading the data to be indexed, spilling the

indexed data and structures to disk, as well as incur-

ring the computation costs of figuring out where each

new data entry belongs to (in the index structure). As

the data size grows, the total indexing cost increases

dramatically, to a degree where it creates a big and dis-

ruptive gap between the time when the data is available

and the time when one can actually have access to the

data. In fact, as the data grows, the query processing

cost (105 queries in the case of Figure 1) increasingly

2 Kostas Zoumpatianos et al.

0	

5	

10	

15	

20	

25	

30	

35	

0	
 250	
 million	

(250	
 GB)	

500	
 million	

(500	
 GB)	

750	
 million	

(750	
 GB)	

1	
 billion	
 	
 	
 	
 	

(1	
 TB)	

To
ta
l	
 c
os
t	
 f
or
	
 in
de

x	

bu

ild
in
g	

an

d	

qu

er
y	

pr
oc
es
si
ng
	
 (H

ou
rs
)	

Dataset	
 Size	
 (#	
 of	
 data	
 series)	

Indexing	
 (Input)	
 Indexing	
 (Output)	
 Indexing	
 (CPU)	
 Querying	
 (Total)	

Fig. 1 The data to query gap: building a state-of-the-art
index and answering 105 queries for big data series collections.

0	

5	

10	

15	

20	

25	

30	

35	

2K	
 5K	
 10K	
 20K	
 40K	

To
ta
l	
 c
os
t	
 f
or
	
 in
de

x	

bu

ild
in
g	

an

d	

qu

er
y	

pr
oc
es
si
ng
	
 (H

ou
rs
)	

Leaf	
 Size	
 (#	
 data	
 series)	

Indexing	
 (Input)	
 Indexing	
 (Output)	
 Indexing	
 (CPU)	
 Querying	
 (Total)	

Fig. 2 The indexing to querying trade-off: bigger leaf sizes
improve indexing speed, but penalize query answering times.

becomes a smaller fraction of the total cost (indexing

& querying). We will discuss this experiment and its

set-up in more detail later on, but for now it is interest-

ing to note that the performance shown in Figure 1 is

actually the optimal one as we have chosen a leaf size

which enables a quick index build time.

As Figure 2 shows (for a 500 million data series set),

the smaller the leaf size is the harder it becomes to

build an index, while the bigger the leaf size is, the

more we penalize query answering times (105 queries in

this case). Thus, simply choosing a large leaf size does

not resolve the data to query problem.

Data Exploration. As data sizes grow even bigger,

waiting for several days before posing the first queries

can be a major show-stopper for many applications

both in businesses and in sciences. For example, this

is the case when high velocity financial tick data have

to be processed in real-time for computing risks [2], or

in vehicle monitoring, where jet airplane engines can

generate up to 20TB per hour that needs to be pro-

cessed for early identification of potentially dangerous

situations [47]. Moreover, it is not unusual for various

other applications to also involve numbers of sequences

in the order of hundreds of millions to billions [1,3].

These data have to be processed and analyzed, in order

to identify patterns, gain insights, detect abnormalities,

and extract useful knowledge.

In addition, firing exploratory queries, i.e., queries

which are not known a priori, is becoming quickly a

common scenario. That is, in many cases, analysts and

scientists need to explore the data before they can figure

out what the next query is, or even which experiment

to perform next; the output of one query inspires the

formulation of the next query, and drives the experi-

mental process. In such cases, performing tuning and

initialization actions up-front suffers from the fact that

we do not have enough knowledge about which data

parts are of interest [26,30]. Similarly, in many applica-

tions, predefined queries are beneficial only if they can

track data patterns or events within a given time limit;

e.g., traffic monitoring applications for advertisement

need to quickly determine user positions and interests.

Adaptive Data Series Indexing. In this work, we

study the data to query time gap, and focus on the

index creation bottleneck for interactive exploration of

very large collections of data series. We propose the

first adaptive indexing solution for data series, which

minimizes the index creation time, allowing users to

query the data soon after its generation, and several

times faster compared to state-of-the-art indexing ap-

proaches. As more queries are posed, the index is con-

tinuously refined and subsequent queries enjoy even

better execution times.

During creation time, our Adaptive Data Series in-

dex (ADS) performs only a few basic steps, mainly cre-

ating the basic skeleton of a tree which contains con-

densed information on the input data series. Its leaves

do not contain any raw data series and remain unmate-
rialized until relevant queries come. As queries arrive,

ADS fetches the relevant data series from the raw data,

and moves only those data series inside the index. Fu-

ture queries may be completely covered by the contents

of the index, or alternatively ADS adaptively and incre-

mentally fetches any missing data series directly from

the raw data set. When the workload stabilizes, ADS

can quickly serve fully contained queries, while as the

workload shifts, ADS may temporarily need to perform

some extra work to adapt before stabilizing again. In

addition, ADS does not require a fixed leaf size; it dy-

namically and adaptively adjusts the leaf size in hot

areas of the index. All leaves start with a reasonably

big size to guarantee fast indexing times, but the more

a given area is queried, the more the respective leaves

are split into smaller ones to enhance query answering

times.

The net effect is that users do not have to wait for

extended periods of time before getting access to the

data. Our results show that by the time state-of-the

ADS: The Adaptive Data Series Index 3

art indexing approaches are still in the indexing phase

(having answered zero queries), our proposed approach

allows users to answer several hundreds of thousands of

queries.

Although the concept of adaptive indexing has been

studied in the context of column-store databases, there

the main goal is to incrementally sort individual ar-

rays (i.e., columns) for point or range queries over 1-

dimensional points. In contrast, a data series index is

a tree-based index that is tailored to answer similarity

search queries over data series collections, thus requir-

ing very different techniques, able to simultaneously in-

dex multiple arrays (i.e., data series).

Contributions. Our contributions are summarized as

follows.

– We demonstrate the inability of state-of-the-art in-

dexing to cope with exploratory analysis of very

large data series collections. We show that the index

creation time is a major bottleneck which becomes

exponentially worse as data grows.

– We introduce the first adaptive data series index.

Adaptive data series indexing minimizes the data

to query gap by delaying actions until they are ab-

solutely necessary. Initialization cost is kept at very

low levels; only a minimal tree structure based on a

summary of the data is built initially. Then, the in-

dex structure is continuously enriched as more data

and queries arrive and only for the hot part of the

data. Each query that is not covered by the current

contents of the index, triggers a sequence of actions

that have as a side-effect more data to be brought

inside the index.

– We demonstrate that no special set-up is required

regarding critical low-level details such as leaf size

and tree depth. We propose adaptive data series in-

dexing algorithms that start with a rather big leaf

size and a shallow tree in order to minimize initial-

ization costs for new data, but then as queries arrive

and focus to specific data areas, they adaptively and

automatically expand hot subtrees and adjust leaf

sizes in the hot branches of the index to minimize

querying costs.

– We present algorithms for both approximate and

exact query answering. In both cases, we make

sure that new data are loaded in the index at a

controlled rate (by limiting the number of leaves

that are materialized). This is particularly useful as

we want to amortize the index creation cost over

multiple queries. For the exact search, we describe

an algorithm that clearly departs from traditional

approaches. Existing exact query answering algo-

rithms suffer from a potentially large number of ran-

dom disk accesses, because of the need to visit leaves

on a most-promising-first order. In contrast, the ex-

act algorithm we propose ensures a sequential disk

access pattern. It starts by computing lower bounds

based on a summarized version of the data (that

fits in main-memory), leading to a skip-sequential

access pattern on the raw data on disk.

– We experimentally evaluate our approach using

both synthetic and real-world datasets, and demon-

strate a drastic reduction in the data to query time.

The approximate search algorithm is able to handle

several hundreds of thousands of queries by the time

that state-of-the-art data series (iSAX 2.0 [11]) and

multi-dimensional (R-trees [23], X-trees [9], KD-

Trees [8]) techniques are still in the index cre-

ation phase. Moreover, we show that our approach

is faster than the state of the art, also for the task

of full index creation.

Outline. The rest of the paper1 is organized as follows.

In Section 2, we discuss related work and present the

necessary background. Section 3 presents ADS in detail.

Section 4 presents a novel exact search algorithm that

outperforms traditional approaches. Section 6 describes

the experimental evaluation, and Section 7 concludes

and discusses future work.

2 Preliminaries and Related Work

In this section, we provide some preliminary definitions

and introduce the related work on adaptive indexing

and on state-of-the-art data series indexing.

Data Series. Formally, a data series T = (p1, ...pn) is

defined as a sequence of points pi = (vi, ti) where each

point is associated with a value vi and a position ti,

which defines the order of this point in the sequence (ti
can be time in the case of time series).

Similarity Search in Data Series. One of the most

basic data mining tasks is that of finding similar data

series in a database [6]. The query comes in the form

of a data series X and it says “find me the data series

in the database which is most similar to X”. Similar-

ity search is an integral part of most data mining pro-

cedures, such as clustering [36,58,46,43] classification

and deviation detection [10,14]. Similarity is measured

using a distance function: Euclidean Distance (ED) [6]

is usually chosen for its simplicity, while Dynamic Time

Warping (DTW) [42] allows for local time shifts in the

two data series. Several other distance functions have

been proposed [56], most notably the Edit Distance on

Real sequences (EDR) [15], and the Longest Common

Subsequence (LCSS) [54].

1 This paper is an extended version of [64]. It describes
an exact search algorithm and a new full index construction
method, both outperforming the state-of-the-art. It also in-
cludes more detailed discussions and additional experiments.

4 Kostas Zoumpatianos et al.

(a) A raw data series. (b) PAA representation of data series.

00

01
10

11 11

N
(0

, 1
)10 10

(c) SAX representation of data series.

Fig. 3 Example PAA/SAX representation for a data-series.

A common approach for answering such queries

is to perform a dimensionality reduction technique

(the particular choice is of small importance [40,39]),

such as Discrete Fourier Transforms (DFT) [6], Dis-

crete Wavelet Transforms (DWT) [13], Discrete Haar

Wavelet Transforms (DHWT)Piecewise Aggregate Ap-

proximation (PAA) [35,61], or Symbolic Aggregate ap-

proXimation (SAX) [37] and then use this represen-

tation for indexing. Lower bounding functions in the

lower dimensionality spaces can be used to bound the

true distances between data series, thus, allowing search

algorithms to perform pruning. At the same time, a

large set of indexing methods have been proposed for

this kind of representations, including traditional mul-

tidimensional [23,9] and specialized [50,51,11,7,57] in-

dexes.

Our work follows the same high level principles, but

it is the first to introduce an adaptive indexing mecha-

nism for data series in order to assist exploratory simi-

larity search in big data sets. In all previous work, the

data series index is built in one step a priori and no

queries may be processed until the index is ready. On

the contrary, in our work, query processing and index
building are interleaved, resulting in a drastically re-

duced data to query time.

Adaptive Indexing. The concept of adaptive index-

ing was recently introduced in the context of column-

store databases [28,27,29,31,24,48,21,22]. The intu-

ition is that instead of building database indexes up-

front, indexes are built during query processing, adapt-

ing to the workload. In particular, the algorithms are

focused on how to incrementally sort columns in main-

memory column-stores. The query predicates are used

as pivots during the index refinement steps. Each index

refinement step performed during a single query can

be seen as a single step of an incremental quick-sort

action. As more queries touch a column, this given col-

umn reaches closer to a sorted state. The benefit is that

adaptive indexing avoids fully sorting columns up front

at a high initialization cost, especially when there is no

idle time to do so, or no reliable workload knowledge

that this is indeed needed. These ideas have also been

extended lately for Hadoop-based environments [45].

Even though in this paper we follow the same philos-

ophy, our work is the first to design an adaptive index

for data series processing and similarity search queries.

Contrary to working with arrays as in column-store re-

lational databases in the case of cracking, our work is

based on tree-structures, which are suited for data series

indexing, where we index more than one columns at a

time (since each data series can be considered an array)

via reduced resolutions. One could also consider stor-

ing a data series as a row in a column-store, i.e., each

point being a separate attribute and then use adaptive

indexing. However, then we lose the locality property as

accessing one data series would require accessing several

different files. Sideways cracking [29] has been proposed

in order to handle multiple columns in a column-store,

but this is a completely different paradigm, indexing a

single relational table across one dimension at a time,

and essentially relying in replication to align columns.

In addition, contrary to indexing relational data where

a global ordering can be imposed, i.e., incrementally

creating a range index, in our case a global ordering

is not possible and we are answering nearest neighbor

queries. Our index introduces several novel techniques

for adaptive data series indexing such as creating only

a partial tree structure deep enough to not penalize the

first queries with a lot of splits, and filling it on demand,

as well as adapting leaf sizes on-the-fly and with vary-

ing leaf sizes across the index. Some concepts that have

appeared in past adaptive indexing work apply here as

well, but only as concepts, as the design of the algo-

rithms and data structures is tailored for data series.

For example, like in [31,48] we start with a lightweight

preparatory step, but without having a global unique

ordering of the data. In addition, the notion of adap-

tively bringing the data inside the index is conceptually

similar to partial sideways cracking [29].

Data Series Representations and the iSAX In-

dex. We now discuss the state-of-art data series index-

ing schemes. In 2000, Yi and Faloutsos [61], as well as

Keogh et al. [35], both independently presented the idea

of segmented means [61] or Piecewise Aggregate Ap-

proximation (PAA) representation [35]. This represen-

tation allows for dimensionality reduction in the time

ADS: The Adaptive Data Series Index 5

domain, by segmenting the data series in equal parts

and calculating the average value for each segment. An

example of PAA representations can be seen in Fig-

ure 3; in this case the original data series is divided

into 3 equal parts. Based on PAA, Lin et al. [37] intro-

duced the Symbolic Aggregate approXimation (SAX)

representation. It works by partitioning the value space

in segments of sizes that follow the normal distribution.

Each PAA value can then be represented by a charac-

ter (or a small number of bits) that corresponds to the

segment that it falls into. This leads to a representa-

tion with a very small memory footprint, an important

requirement for managing very large data series collec-

tions. A segmentation of size 3 can be seen in Figure 3,

where the data series is represented with the SAX word

“10 10 11”.

The SAX representation was later extended to in-

dexable SAX (iSAX) [50]; it considers variable cardi-

nality for each character of a SAX representation, and

as a result variable degrees of precision. An iSAX rep-

resentation is composed of a set of characters that form

a word. Each word represents a data series available in

the dataset. Each character in a word is accompanied

by a number that denotes its cardinality (the number

of bits that describe this character). In the case of a

binary alphabet, with a word size of 3 characters and a

maximum cardinality of 2 bits, we could have a set of

data series (two in the following example) represented

with the following words: 002102012, 002112012, where

each character has a full cardinality of 2 bits and each

word corresponds to one data series. If we now reduce

the cardinality of the second character in each word, we

could represent both of them with a single iSAX rep-

resentation: 00211012. That is because 11 corresponds

to both 10 and 11, since the last bit is trailed when the

cardinality is reduced. By starting with a cardinality of

1 for each character in the root node and by gradually

performing splits by increasing the cardinality by one

character at a time, one can build a tree index [50,51].

Such cardinality reductions can be efficiently calculated

with bit mask operations.

The state-of-the-art iSAX 2.0 index is also based on

this property [11]; it is a data series index that imple-

ments fast bulk loading. Figure 4 depicts an example

where each iSAX word has 3 segments and each segment

a maximum cardinality of 4 (2 bits). The root node has

2w children (23 in Figure 4) while each child node forms

a binary sub-tree. Each leaf node corresponds to a split

in one dimension and points to a single area of the do-

main.

A typical data series index, such as iSAX, contains

both the summarized representations and the actual,

raw data series values. The representations are used as

d1

00 01

01

00

11

10

0 1

0

1

0
1

d2

d3

d1

00 01

11 0 0

1 0 0

ROOT

10 0 0

0 0 0

11 00 0 11 01 0

1 1 1

PAA data series ∈ R3
Intermediate node
Leaf node
Possible split position
Active split position

Fig. 4 An example of iSAX and its space partitioning.

index keys to efficiently guide index creation, as well as

for answering similarity search queries by pruning the

search space, i.e., eliminating candidate data series that

cannot possibly be part of the answer (true negatives).

The actual data series are also needed in order to elim-

inate the false positives, and produce the exact, correct

answer.

Our contributions build on top of this line of work

by enabling adaptive indexing using the state-of-the-art

iSAX representations. Contrary to past work, our new

adaptive index allows for incremental, continuous and

adaptive index creation during query time. Initializa-

tion cost is kept low, bringing the ability to query the

data set much sooner than in past work. We show both

the significant bottleneck faced by state-of-the-art in-

dexing as we grow to large data, as well as the drastic

improvement that adaptive indexing brings.

Scans vs Indexing. Even though recent studies have

shown that in certain cases sequential scans can be

performed very efficiently [42], such techniques are

only applicable when the database consists of a single,

long data series, and queries are looking for potential

matches in small subsequences of this long data series.

Such approaches, however, do not bring benefit to the

general case of querying a mixed database of several

data series, which is the focus of this study. Therefore,

indexing is required in order to efficiently support data

exploration tasks, which involve ad-hoc queries, i.e., the

query workload is not known in advance.

6 Kostas Zoumpatianos et al.

3 The Adaptive Data Series Index

As we discussed earlier, dealing with very large amounts

of data series leads to new challenges in data series in-

dexing. Specifically, we stressed the fact that state-of-

the-art indexing mechanisms need a prohibitively large

amount of time to build a full index: it may take up to

several days to create a single index.

In this section, we describe our solution to this prob-

lem. We present adaptive data series indexing in detail,

and describe how it can reduce the data to query gap

by shifting costly index creation steps from the initial-

ization time to the query processing time. For ease of

presentation, we discuss adaptive data series indexing

in two steps; initially we present ADS, a design which

introduces the concept of adaptively and incrementally

loading data series in the index. Then, we discuss ADS+

which introduces the concept of adaptive splits and

adaptive leaf sizes. Finally, we present PADS+, an ag-

gressive variation of ADS+, which is tailored for even

better performance in skewed workloads.

3.1 The ADS Index

In order to increase the exploration ability we need to

decrease the data to query time. That is, we need to

decrease the amount of time needed until a user can ac-

cess and query new data at acceptable response times.

The main bottleneck is the index construction over-

head. ADS attacks the index construction bottleneck by

shifting the construction of the leaf nodes of the index

(the only nodes that can carry raw values for the data

series, and have to be stored on disk) to query time.

During the index creation phase, ADS creates a tree
which contains only the iSAX representation for each

data series; the actual data series remain in the raw

files and are only loaded in an adaptive way if a rele-

vant query arrives. On the contrary, state-of-the-art in-

dexes, such as iSAX 2.0, a priori load all raw data series

in the index at the leaves of the tree (in order to reduce

random I/O during query processing). The analysis of

the performance of iSAX 2.0 in Figure 1 motivates our

design choice for ADS; it shows that reading from and

writing to disk is the main cost component during the

indexing phase of iSAX 2.0. The results show that a big

part of these read and write costs is due to reading the

raw data series from disk and to writing the leaves of the

index tree back to disk (after insertions). Motivated by

data exploration scenarios where we do not know a pri-

ori which data series are relevant for our analysis, ADS

avoids these costs completely at initialization time; it

pays such costs at query time, only when absolutely

necessary, and only for the data which are relevant to

the workload. Below we describe ADS in detail.

3.1.1 Index Creation

The index creation phase takes place before queries

can be processed but it is kept very lightweight. The

process can be seen in Algorithm 1. The input is a

raw file which contains all data series in ASCII form.

ADS builds a minimal tree during this phase, i.e., a

tree which does not contain any data series. The tree

contains only iSAX representations. The process starts

with a full scan on the raw file to create an iSAX repre-

sentation for each data series entry. This can be seen in

lines 2-5 of Algorithm 1. For data series we also record

its offset in the raw data file so future queries can easily

retrieve the raw values. To minimize random memory

access and random I/O we use a set of buffers in main

memory (line 6) to temporarily hold data to be added

in the index. When these buffers are full (line 7), we

move the data to the appropriate leaf buffer in the index

(see discussion in Buffering later on). If necessary, we

perform split operations on the way (lines 12-15). The

split operation is described in detail in Algorithm 2.

Then we sequentially flush each leaf buffer to the disk

(Algorithm 1, line 20), set each leaf to be in PARTIAL

mode which means that we do not store any raw data

series in this leaf (line 21). This process continues un-

til we have indexed all raw data series. We will discuss

how we handle new data (updates) later on.

Delaying Leaf Construction. The actual data series

are only necessary during query time, i.e., in order to

give a complete and correct answer. During the index

creation time, the iSAX representations are sufficient

to build the index tree. In addition, not all data series

are needed to answer a particular set of queries. In this

way, ADS first creates all necessary iSAX representa-

tions and builds the index tree without inserting any

data series and only adaptively inserts data series dur-

ing query processing (to be discussed later on). There

are numerous benefits that come with such a design

decision, the most important being the significantly re-

duced cost to build the index. While it is clear that

materializing leaves on demand will incur a large ran-

dom I/O cost, the main benefit comes from the fact

that (a) ADS avoids dealing with the raw data series

(i.e., other than the single scan on the raw file to create

the iSAX representations), (b) it does not move the raw

data series through the tree, and it (c) it does not place

the raw data series into the leaf nodes. The data series

simply stay in the raw file. This brings benefits in terms

of I/O and memory bandwidth used during indexing.

Especially when ADS comes to the point of spilling leaf

nodes to disk (i.e., all leaves when there is no more free

memory), it has a big advantage in that its leaf nodes

are very lightweight, containing only iSAX representa-

tions, which can be orders of magnitude smaller than

ADS: The Adaptive Data Series Index 7

Main Memory

Hard Disk

01
02
03
04
05

Raw file
00

Buffer

PARTIAL
0* 0* 1*

00 00 10
00 00 11
00 01 10

ptr SAX

ROOT

 . . .
0 0 1 0 1 0

 . . .

PARTIAL
0* 10 00

ptr SAX
 04 00 10 00

ptr SAX

PARTIAL
0* 10 01

 00 00 10 01
 01 00 10 01

0 10 0

0 10 00 0 10 01

 . . .

02
03
05

(a) Initial state.

Main Memory

Hard Disk

01
02
03
04
05

Raw file
00

Buffer

PARTIAL
0* 0* 1*

00 00 10
00 00 11
00 01 10

ptr SAX

ROOT

 . . .
0 0 1 0 1 0

 . . .

PARTIAL
0* 10 00

ptr SAX
 04 00 10 00

ptr SAX

PARTIAL
0* 10 01

 00 00 10 01
 01 00 10 01

0 10 0

0 10 00 0 10 01

05
03

02

Lo
ad

 . . .

02
03
05

(b) Buffered leaf state.

Main Memory

Hard Disk

01
02
03
04
05

Raw file
00

Buffer

ROOT

 . . .
0 0 1 0 1 0

 . . .

PARTIAL
0* 10 00

ptr SAX
 04 00 10 10

ptr SAX

PARTIAL
0* 10 01

 00 00 10 01
 01 00 10 01

0 10 0

0 10 00 0 10 01

FULL
0* 0* 1*

ptr SAX

05
03
02 00 00 10

00 00 11
00 01 10

TS

Flush

 . . .

(c) Flushed leaf state.

Fig. 5 The ADS index states during query answering.

Algorithm 1: createIndex(file, index, n)

1 while not reached end of file do
2 position = current file position;
3 dataSeries = read data series of size n from file;
4 isax = convert dataSeries to iSAX;
5 Move file pointer n points;
6 Add the (isax, position) pair in the index’s FBL buffer;

7 if the main memory is full then

8 // Move data from the First Buffers (FBL)
9 // to the appropriate Leaf Buffer (LBL)

10 for every (isax, position) pair ∈ FBL buffer do
11 targetLeaf = Leaf of index for putting (isax,

position);
12 while targetLeaf is full do
13 Split(targetLeaf, isax);
14 targetLeaf = New leaf for putting (isax,

position);
15 Insert (isax, position) in targetLeaf ’s LBL

buffer;

16 // Flush all Leaf Buffers containing
17 // (isax, position) pairs to the disk, and
18 // set them in PARTIAL mode (no raw data)

19 for every leaf in index do
20 Flush the LBL buffer of this leaf to the disk;
21 Set leaf to be in PARTIAL mode;

22 clear buffers;

the data series themselves. For example, a data series

of 256 points with a float precision of 4 bytes, can be ef-

ficiently summarized with 16 characters of 1 byte each.

Moreover, by not inserting the data series in the index,

we significantly reduce the cost of splits at the leaf level

during the indexing phase; the I/O cost is minimized

as only iSAX representations are shuffled between in-

dex nodes. All ADS variations maintain the main index

tree in memory, while leaf nodes are kept on disk.

Algorithm 2: Split(leaf)

1 diskData = get data from leaf ’s disk pages;
2 Insert diskData in leaf ’s buffer (LBL buffer);
3 Split leaf in the best point and create two new children

leaves;
4 Set leaf as an intermediate node;
5 Set leaf.leftChild in PARTIAL mode;
6 Set leaf.right in PARTIAL mode;
7 for every (isax, position) pair ∈ leaf’s LBL buffer do
8 Insert (isax, position) pair in the appropriate child leaf;

Buffering. ADS improves locality when inserting data

by buffering data at two levels of the index. Buffering

amortizes random access (both in memory and on disk)

and is a common practice to improve locality in tree-

based indexes, e.g., [62,11], or even in database query

plans (which typically have a tree shape) [63]. During

index creation, instead of pushing iSAX representations

through the index one at a time, ADS initially keeps

those in the First Buffer Layer (FBL), a set of buffers

corresponding to the children nodes of the index root.

Once the FBL is full (i.e., all free memory is consumed),

these representations are then passed through the tree

and moved to the second layer of buffers correspond-

ing to the leaf nodes of the index, called Leaf Buffer

Layer (LBL). Data is then flushed to disk one leaf at

a time, ensuring sequential writes. Additionally, every

time that a leaf needs to be split and iSAX represen-

tations need to be read from disk, we keep them in the

LBL, until we run out of space (Algorithm 2, lines 1-2).

The leaves are flushed again when there is no more free

memory.

8 Kostas Zoumpatianos et al.

Algorithm 3: approxSearchADS(dataSeries,

isax, index)

1 targetLeaf = leaf of index where this isax should be
inserted;

2 // Calculate the real leaf distance between the dataSeries
3 // and the raw data series that this leaf refers to or

contains.

4 bsf = calculateRealLeafDistance(targetLeaf, dataSeries);
5 return bsf ;

Mapping on the Raw File. ADS reduces the index

creation costs by not keeping around the data series.

However, the raw data series is needed when queries

arrive. For this reason, ADS needs an efficient way to

quickly access a given data series entry. To achieve this,

ADS maintains a single pointer for each data series en-

try X in the leaf node where data series X would nor-

mally reside. This is a pointer to the raw data file that

provides direct access to the raw data series. (As we will

discuss later on, the first time the leaf is accessed by a

query all pointers are dropped and the corresponding

raw data series are loaded.)

Example 1 An example of ADS is shown in Figure 5

which depicts the state of the index after certain events.

An index is built on top of a set of iSAX words with

a word size of 3 characters and a maximum cardinality

for each character of 2 bits. The leaf nodes are depicted

as oval shapes with border lines and the intermediate

nodes without any border lines. Each intermediate node

is split on a single character; the one surrounded by a

bold cycle. Each leaf node is connected to a file on disk,

where the full cardinality iSAX representations and the

corresponding pointers to the raw file are stored. Fig-

ure 5(a) shows how the index looks like immediately

after the initialization phase and before any query has

been processed. In this case, all leaf nodes are in PAR-

TIAL mode, i.e., they do not contain any data series,

since no query has been executed yet. Figure 5(b) and

Figure 5(c) show what happens when a query arrives

and we discuss that in the next subsection.

3.1.2 Querying and Refining ADS

We continue our discussion by describing the process

of query answering using ADS. Contrary to static in-

dexes, the querying process in ADS contains a few extra

steps. In addition to answering a query q, the query pro-

cess refines the index during the processing steps of q.

These extra index refinement steps do not take place

after the query is answered; they develop completely

on-the-fly and are necessary in order to answer q. At

any given time, ADS contains just enough information

in order to handle the current workload. Thus, when

new queries arrive, which do not follow the patterns in

Algorithm 4: exactSearchADS(dataSeries, in-

dex)

1 isax = convert dataSeries to iSAX;
2 bsf = approxSearchADS(dataSeries, isax, index);
3 bsfDist = Infinite;
4 queue = Initialize a priority queue with the root nodes of

the index;
5 while node = pop next node from queue do
6 if node is a leaf and MinDist(dataSeries, node) <

bsfDist then
7 realDist = calculateRealLeafDistance(dataSeries,

node);
8 if realDist < bsfDist then
9 bsf = node;

10 bsfDist = realDist;

11 else if MinDist(dataSeries, node) ≥ bsfDist then
12 // Found the nearest neighbor, break the loop
13 break;

14 else
15 // It is an intermediate node: push children to the

queue.
16 minDLeft = MinDist(dataSeries,

node.leftChild);
17 minDRight = MinDist(dataSeries,

node.rightChild);
18 if minDLeft < bsfDist then
19 Put node.leftChild in queue with priority

minDLeft;
20 if minDRight < bsfDist then
21 Put node.rightChild in queue with priority

minDRight;
22 return bsf ;

Algorithm 5: calculateRealLeafDistance(leaf,

dataSeries)

1 // Check if the raw data have been fetched in the leaf
2 if leaf is in FULL mode then
3 if leaf has raw data series in LBL buffer then
4 bufferBSF = find closest to dataSeries record in

LBL;
5 if leaf has raw data series on disk then
6 diskBSF = find closest to dataSeries record on

disk;
7 if diskBSF < bufferBSF then
8 return diskBSF ;
9 else

10 return bufferBSF ;

11 else if leaf is in PARTIAL mode then
12 // Materialize leaf
13 records = Get all (isax, position) pairs from disk and

LBL;
14 Sort records based on positions;
15 for every (isax, position) pair ∈ records do
16 Seek position in raw data file;
17 rawDataSeries = Fetch raw data series from raw

data file;
18 Insert (isax, position, rawDataSeries) tuple in

LBL buffer;
19 if main memory is full then
20 Flush all LBL buffers on disk;

21 Set leaf to FULL mode;
22 return calculateRealLeafDistance(node, dataSeries);

previous requests, ADS needs to enrich the index with

more information.

We provide algorithms for both approximate search

and exact search. Approximate search provides answers

of good quality (returns a top 100 answer for the nearest

neighbor search in 91.5% of the cases for iSAX [50,51])

with very fast response times. On the other hand, exact

ADS: The Adaptive Data Series Index 9

search guarantees that we get the exact answer, but

with potentially much higher query execution time.

Approximate Search. When a query arrives (in the

form of a data series), it is first converted to an iSAX

representation. Then, the index tree is traversed search-

ing for a leaf with an iSAX representation similar to

that of the query (Algorithm 3). This is the leaf where

the query series would reside if it was a part of the in-

dexed dataset. Whether such a leaf exists already or

not, depends not only on the data, but also on past

queries. If such a leaf does not exist, then the most simi-

lar leaf to the query is used instead. In the case that the

leaf node where the search ends is in PARTIAL mode,

i.e., it contains only iSAX representations but not any

data series, then all missing data series are fetched from

the raw file. To enrich a partial leaf, ADS fetches the

partial leaf from disk and reads all the positions in the

raw file of the data series that belong in this leaf. (A

partial leaf holds the iSAX representation for each data

series and also its position in the raw file.) Then, it sorts

those positions (to ensure sequential access to the raw

file) and fetches the raw data series. The new data series

are assigned to leaf nodes and kept in memory in the

LBL buffers (Figure 5(b)). The corresponding leaf node

contains pointers to the buffered data. When there is no

more free memory, the LBL buffers are flushed to disk

(as seen in Figure 5(c)). The corresponding leaf is then

marked as FULL. At this point the leaf data is fully

materialized and future queries that need to access the

data series for this leaf node, need to fetch the binary

leaf data from disk or from the LBL buffer. Once the

data series that match the current query are available

(either being fetched from the raw file, from the buffer,

or from disk) then the real distance from the query is

calculated. The minimum distance found in the leaf is

used as the approximate answer.

Exact Search. When a query arrives, an approximate

search is initially issued in order to get an initial Best

So Far answer (BSF). If the BSF is not 0, which means

that we did not find a perfect match, then the node

with the best possible answer has to be identified. This

is done in a recursive way as in the original iSAX index

using the MinDistPaaToiSAX [50], and until we are not

able to improve BSF any further. The difference is that

if a new leaf is needed, which is in partial mode, ADS

will enrich this leaf on-the-fly.

The algorithm, described in Algorithm 4, starts by

putting all the children of the root in a min-stack ranked

using their lower distance bound towards the query

(line 4). Then the one with the best minimum distance

is popped (line 5) and explored, as long as this dis-

tance is better than BSF (lines 6-10). If the currently

popped node is an intermediate node (lines 14-21) then

its children are pushed into the min-stack for possible

future exploration. The process continuous recursively,

and stops when the best lower bound is bigger than the

BSF distance (lines 11-13), which means that it is not

possible to improve the current answer any further.

Example 2 Continuing the example of Figure 5, Fig-

ure 5(b) and Figure 5(c) show what happens when a

query arrives. Figure 5(b) depicts the case when a query

reaches a non materialized leaf. The raw data series

are fetched in main memory buffers, and the leaf now

points to them. If the buffers become full, the raw data

series for each leaf are flushed to disk, thus converting

them into fully materialized leaves. This can be seen in

Figure 5(c); the full leaf contains both the iSAX repre-

sentations and the raw data series.

3.2 The ADS+ Index (Adaptive Leaf Size)

ADS drastically reduces the index creation time by

avoiding the insertion of raw data series in the index

until a relevant query arrives. However, there is oppor-

tunity for significant further optimizations; by studying

the operations that get executed during adaptive index

building and refinement we found that the time spent

during split operations in the index tree is a major cost

component.

Leaf Size and Splits. Splits are expensive as they

cause data transfer to and from disk (to update node

data). The main parameter that affects split costs is the

leaf size, i.e., a tree with a big leaf size has a smaller

number of nodes overall, causing less splits. Thus, a big

leaf size reduces index creation time. However, as we

have shown in Figure 2, big leaves also penalize query

costs and vice versa: when reaching a big leaf during a

search, we have to scan more data series than with a

small leaf. State-of-the-art indexes rely on a fixed leaf

size which needs to be set up front, during index cre-

ation time, and typically represents a compromise be-

tween index creation cost and query cost.

Adaptive Leaf Size. To further optimize the data

to query time, we introduce a lightweight variation of

ADS, ADS+, with a more transparent initialization

step. The main intuition is that one can quickly build

the index tree using a large leaf size, saving time from

very expensive split operations, and rely on queries that

are then going to force splits in order to reduce the

leaf sizes in the hot areas of the index. ADS+ uses two

different leaf sizes: a big build-time leaf size for opti-

mal index construction, and a small query-time leaf size

for optimal access costs. This allows us to make future

queries benefit from every split operation performed,

finding the relevant data by traversing the tree, and

not by scanning larger leaves. Initially, the index tree

10 Kostas Zoumpatianos et al.

Main Memory

Hard Disk

ROOT

0 1 0

0 10 0

0 0 1

iSAX iSAX
iSAX iSAX
iSAX iSAX
iSAX iSAX
iSAX iSAX
iSAX iSAX
iSAX iSAX
iSAX iSAX
iSAX iSAX
iSAX iSAX
iSAX iSAX
iSAX iSAX
iSAX iSAX
iSAX iSAX
iSAX iSAX
iSAX iSAX
iSAX iSAX
iSAX iSAX
iSAX iSAX
iSAX iSAX
iSAX iSAX
iSAX iSAX
iSAX iSAX
iSAX iSAX

PARTIALiSAX iSAX
iSAX iSAX
iSAX iSAX
iSAX iSAX
iSAX iSAX
iSAX iSAX
iSAX iSAX
iSAX iSAX
iSAX iSAX
iSAX iSAX
iSAX iSAX
iSAX iSAX
iSAX iSAX
iSAX iSAX
iSAX iSAX
iSAX iSAX
iSAX iSAX
iSAX iSAX
iSAX iSAX
iSAX iSAX
iSAX iSAX
iSAX iSAX
iSAX iSAX
iSAX iSAX

PARTIAL

 . . .

iSAX iSAX
iSAX iSAX
iSAX iSAX
iSAX iSAX
iSAX iSAX
iSAX iSAX
iSAX iSAX
iSAX iSAX
iSAX iSAX
iSAX iSAX
iSAX iSAX
iSAX iSAX
iSAX iSAX
iSAX iSAX
iSAX iSAX
iSAX iSAX
iSAX iSAX
iSAX iSAX
iSAX iSAX
iSAX iSAX
iSAX iSAX
iSAX iSAX
iSAX iSAX
iSAX iSAX

PARTIAL

 . . .

0 11 0

(a) ADS+ after indexing.

Main Memory

Hard Disk Adaptively Split Region

ROOT

 . . .

0 1 0

0 10 0

0 0 1

iSAX iSAX
iSAX iSAX
iSAX iSAX
iSAX iSAX
iSAX iSAX
iSAX iSAX
iSAX iSAX
iSAX iSAX
iSAX iSAX
iSAX iSAX
iSAX iSAX
iSAX iSAX
iSAX iSAX
iSAX iSAX
iSAX iSAX
iSAX iSAX
iSAX iSAX
iSAX iSAX
iSAX iSAX
iSAX iSAX
iSAX iSAX
iSAX iSAX
iSAX iSAX
iSAX iSAX

PARTIALiSAX iSAX
iSAX iSAX
iSAX iSAX
iSAX iSAX
iSAX iSAX
iSAX iSAX
iSAX iSAX
iSAX iSAX
iSAX iSAX
iSAX iSAX
iSAX iSAX
iSAX iSAX
iSAX iSAX
iSAX iSAX
iSAX iSAX
iSAX iSAX
iSAX iSAX
iSAX iSAX
iSAX iSAX
iSAX iSAX
iSAX iSAX
iSAX iSAX
iSAX iSAX
iSAX iSAX

PARTIAL

 . . .

0 11 0

0 11 00 0 11 01

11 010111 0100

Raw Data Series
Raw Data Series
Raw Data Series
Raw Data Series
Raw Data Series
Raw Data Series
Raw Data Series
Raw Data Series
Raw Data Series
Raw Data Series
Raw Data Series
Raw Data Series
Raw Data Series
Raw Data Series

iSAX iSAX iSAX
iSAX iSAX iSAX
iSAX iSAX iSAX
iSAX iSAX iSAX
iSAX iSAX iSAX
iSAX iSAX iSAX
iSAX iSAX iSAX
iSAX iSAX iSAX
iSAX iSAX iSAX
iSAX iSAX iSAX
iSAX iSAX iSAX
iSAX iSAX iSAX
iSAX iSAX iSAX
iSAX iSAX iSAX
iSAX iSAX iSAX
iSAX iSAX iSAX

FULLiSAX iSAX
iSAX iSAX
iSAX iSAX
iSAX iSAX
iSAX iSAX
iSAX iSAX
iSAX iSAX
iSAX iSAX
iSAX iSAX
iSAX iSAX
iSAX iSAX
iSAX iSAX
iSAX iSAX
iSAX iSAX
iSAX iSAX
iSAX iSAX
iSAX iSAX
iSAX iSAX
iSAX iSAX
iSAX iSAX
iSAX iSAX
iSAX iSAX
iSAX iSAX
iSAX iSAX

PARTIALiSAX iSAX
iSAX iSAX
iSAX iSAX
iSAX iSAX
iSAX iSAX
iSAX iSAX
iSAX iSAX
iSAX iSAX
iSAX iSAX
iSAX iSAX
iSAX iSAX
iSAX iSAX
iSAX iSAX
iSAX iSAX
iSAX iSAX
iSAX iSAX
iSAX iSAX
iSAX iSAX
iSAX iSAX
iSAX iSAX
iSAX iSAX
iSAX iSAX
iSAX iSAX
iSAX iSAX

PARTIAL

(b) ADS+ index after a query.

Main Memory

Hard Disk Adaptively Split Region

0 0 0

.

.

.

ROOT

 . . .

0 1 0

0 11 00 10 0

0 0 0

.

.

.

FBL
0 0 0

FBL
0 0 1

iSAX iSAX
iSAX iSAX
iSAX iSAX
iSAX iSAX
iSAX iSAX
iSAX iSAX
iSAX iSAX
iSAX iSAX
iSAX iSAX
iSAX iSAX
iSAX iSAX
iSAX iSAX
iSAX iSAX
iSAX iSAX
iSAX iSAX
iSAX iSAX
iSAX iSAX
iSAX iSAX
iSAX iSAX
iSAX iSAX
iSAX iSAX
iSAX iSAX
iSAX iSAX
iSAX iSAX

PARTIAL
Raw Data Series
Raw Data Series
Raw Data Series
Raw Data Series
Raw Data Series
Raw Data Series
Raw Data Series
Raw Data Series
Raw Data Series
Raw Data Series
Raw Data Series
Raw Data Series
Raw Data Series
Raw Data Series

iSAX iSAX iSAX
iSAX iSAX iSAX
iSAX iSAX iSAX
iSAX iSAX iSAX
iSAX iSAX iSAX
iSAX iSAX iSAX
iSAX iSAX iSAX
iSAX iSAX iSAX
iSAX iSAX iSAX
iSAX iSAX iSAX
iSAX iSAX iSAX
iSAX iSAX iSAX
iSAX iSAX iSAX
iSAX iSAX iSAX
iSAX iSAX iSAX
iSAX iSAX iSAX

FULL

(c) PADS+ index after a query.

Fig. 6 Examples of ADS+ and PADS+ states.

is built as in plain ADS (Algorithm 1), with a con-

stant leaf size, equal to build-time leaf size. In tradi-

tional indexes, this leaf size remains the same across the

life-time of the index. In our case, when a query that

needs to search a partial leaf arrives, ADS+ refines its

index structure on-the-fly by recursively splitting the

target leaf, until the target sub-leaf becomes smaller or

equal to the query-time leaf size. This can be seen in Al-

gorithm 6. Additionally both Approximate and Exact

search have been modified to use this policy, a shown

in Algorithm 7 (lines 2-5) and Algorithm 8 (lines 7-10),

respectively.

Intuitively what happens is that the target leaf is

split until it becomes small enough, while all leaves cre-

ated due to split actions but are not needed for this

query are then left untouched and thus with a leaf size

which is between the big construction-time leaf size and

the small query-time leaf size. If and only if the work-

load shifts and future queries need to query those leaves,

then ADS+ automatically splits those leaves even fur-

ther to reach a leaf size that gives good query processing

times.

Example 3 An example of this process is shown in Fig-

ures 6(a) and 6(b). Figure 6(a) depicts the state of

ADS+ after initialization and before any query has

arrived, while Figure 6(b) shows how a single query

results in adaptive splits of the right sub-tree until

the target leaf node is fully materialized; intermediate

nodes remain in partial mode, with a variable leaf size.

Adaptive and on demand leaf splitting allow ADS+

to have both fast index building and fast query pro-

cessing. It does not waste time on creating fine-grained

versions of each sub-tree of the index, but rather con-

centrates on the parts that are related to the current

workload. When queries focus to a subset of the dataset,

Algorithm 6: SplitADS+(leaf, targetLeafSize)

1 /* If the leaf size is bigger than the target leaf size, split
node. */

2 if leaf’s leaf size > targetLeafSize then
3 Split(node);
4 SplitADS+(node.leftChild, targetLeafSize);
5 SplitADS+(node.rightChild, targetLeafSize);

Algorithm 7: approxSearchADS+(dataSeries,

isax, index, queryTimeLeafSize)

1 targetLeaf = leaf of index where this isax should be
inserted;

2 if targetLeaf’s leaf size > queryTimeLeafSize then
3 // It can be additionally split
4 SplitADS+(targetLeaf, queryTimeLeafSize);
5 targetLeaf = targetLeaf ’s descendant where this isax

should be inserted;

6 // Calculate the real distance between the dataSeries
7 // and the raw data series that this leaf points to.

8 bsf = calculateRealLeafDistance(targetLeaf, dataSeries);
9 return bsf ;

ADS+ does not need to exhaustively index and opti-

mize all data; it rather concentrates on the most re-

lated sub-trees of the index. When the workload shifts

and a new area of the index becomes relevant, then the

first few queries adaptively optimize the index for the

new area as well by expanding the proper sub-trees and

adjusting leaf sizes.

Delaying Leaf Materialization. Another optimiza-

tion that gives ADS+ a lightweight behavior is that it

delays leaf materialization even further. In particular,

when traversing the tree for query processing, which

leads to adaptive leaf splitting, ADS+ does not mate-

rialize the initial big leaf, nor all the leaves it creates

on its way to the target small leaf. For example, when

ADS+ needs to split big leaf X and this results in X

ADS: The Adaptive Data Series Index 11

Algorithm 8: exactSearchADS+(dataSeries,

index, queryTimeLeafSize)

1 isax = convert dataSeries to iSAX;
2 bsf = approxSearchADS+(dataSeries, isax, index,

queryTimeLeafSize);
3 bsfDist = Infinite;
4 queue = Initialize a priority queue with the root nodes of

the index;
5 while node = pop next node from queue do
6 if node is a leaf and MinDist(dataSeries, node) <

bsfDist then
7 if node’s leaf size > queryTimeLeafSize then
8 // Need to split this leaf more
9 SplitADS+(node, queryTimeLeafSize);

10 Re-Insert node in queue;

11 else
12 // No need to split any more
13 dist = calculateRealLeafDistance(dataSeries,

node);
14 if dist < bsfDist then
15 bsf = node;
16 bsfDist = dist;

17 else if MinDist(dataSeries, node) ≥ bsfDist then
18 // Found the nearest neighbor, break the loop
19 break;

20 else
21 // It is an intermediate node: push children to the

queue.
22 minDLeft = MinDist+(dataSeries,

node.leftChild);
23 minDRight = MinDist+(dataSeries,

node.rightChild);
24 if minDLeft < bsfDist then
25 Put node.leftChild in queue with priority

minDLeft;
26 if minDRight < bsfDist then
27 Put node.rightChild in queue with priority

minDRight;
28 return bsf ;

Algorithm 9: MinDist+(dataSeries, leaf)

1 if leaf is in FULL mode then
2 /* Use the coarse SAX representation of all the data

series and calculate the minimum distance .*/
3 return MinDist(dataSeries, leaf);

4 else
5 /* The node is not materialized yet. We can load the

small iSAX representations file and calculate a tighter
minimum distance using the iSAX representations of
all the data series. */

6 isaxValues = Get all isax representations from disk and
LBL;

7 maxMinDist = 0;
8 for isax ∈ isaxValues do
9 minDist = MinDist(dataSeries, isax);

10 if minDist > maxMinDist then
11 maxMinDist = minDist;

12 return maxMinDist;

being split recursively into n new nodes until we reach

the target leaf Z with a small leaf size, ADS+ fully

materializes only leaf Z. For the rest of the leaves it

uses the partial information contained in the leaves to

perform the splits, i.e., the iSAX representations. This

results in (a) less computation as opposed to having

to split based on raw data, (b) less I/O as SAX rep-

resentations are much smaller, and (c) it enhances the

adaptive behavior of ADS+ as it materializes only the

truly interesting data that the queries are targeting.

3.3 Partial ADS+ (PADS+)

Although the ADS variations described above help to

reduce the indexing cost by omitting the raw data from

the index creation process, ADS and ADS+ still need to

spend time for creating the basic index structure. This

means that users still have to wait until this process fin-

ishes, and even though it is a much faster process than

full indexing, still certain applications may want even

faster access to their data. To further optimize the data

to query time, we introduce a more lightweight tech-

nique which extends ADS+ with an even more trans-

parent initialization step. It is tailored for scenarios

where users may want to fire just a few approximate

queries, as well as for scenarios with high query work-

load skew. The new approach is named Partial ADS+

(PADS+) and its main intuition is to gradually build

parts of the index tree, and only for small subsets of the

data as queries arrive. The concept is similar to the idea

of partial indexes [53] with the difference that the index

is not static, i.e., it is not defined for a pre-decided set

of the data; instead it continuously evolves to fit the

workload.

Index Initialization. The initialization step of

PADS+ is kept as lightweight as possible. PADS+ does

not build an index tree at all; there is only a root node

with a set of FBL buffers that contain only the iSAX

representations. The only step which takes place during

the initialization phase is that PADS+ creates the iSAX

representations based on the raw data (as in ADS+).

This requires a complete scan of the raw data. But then,

instead of spending a significant effort using the SAX

representations to create a tree as ADS+ does, PADS+

stops at this point and is ready to process queries. The

iSAX representations are first kept in in-memory FBL

buffers and then (contrary to ADS and ADS+) spilled

to disk when the buffers are full. Since these buffers

persist on disk, we refer to them as FBL persistent-

buffers (FBL p-buffers). All these steps are similar to

a subset of the initialization effort that takes place for

ADS+. This approach allows PADS+ to significantly

reduce the data-to-query time.

Adapting to Queries. PADS+ continuously and in-

crementally is refined as queries arrive. As the work-

load shifts and requires new data areas, the nodes in

the index tree are adaptively and recursively split to

smaller nodes that contain the required data. It follows

the same procedure as with ADS+ with the difference

that the starting point is an index with a just single root

node with no children nodes. In this way, only the parts

of the index which are truly relevant for the workload

are further developed as queries arrive.

Skewed Workloads. Such an adaptive design favors

scenarios where there is high skew in the workload, i.e.,

12 Kostas Zoumpatianos et al.

only part of the dataset is interesting, or when there

is periodical skew in the sense that queries focus on a

single area of the domain for a given time before the

focus shifts to another area.

Querying. When a query is issued, PADS+ converts

the query to its iSAX representation and finds the cor-

responding FBL p-buffer. It then loads the iSAX rep-

resentations and adaptively splits the buffer data, until

the query-time leaf size is reached, at which point it

loads the raw time series for that leaf. This process is

repeated during query answering, performing adaptive

splits every time that algorithm has to calculate the

distance to a leaf node that has not yet been split to

the query-time leaf size.

When the query answering algorithm needs data

that are missing from the tree, it needs to scan the

data of the corresponding FBL p-buffer and perform

an adaptive split operation on it. In this process, the

initial leaf size is set to infinite; thus, adaptive split op-

erations can be performed by splitting the large buffers

and creating large leaf files, which are split again only

if there is a query that asks for them.

Furthermore, using 16 PAA segments (which is com-

mon in practice), we initially have 216 FBL buffers. As

a result, given a dataset of 1 billion data series, each one

of the 65536 FBL buffers will on average contain around

15 thousand iSAX representations. Using a 1 byte rep-

resentation for each iSAX character (i.e., cardinality

256), and given the fact that we have 16 segments, we

would need 16 bytes for representing each data series.

This means that the average FBL size would be around

235 KB: a file size that makes it trivial to perform split

operations on.

Example 4 An illustration of the PADS+ index can be

seen in Figure 6(c). It represents a random instance af-

ter a few queries have arrived. The index is not fully

built; only a small part of the index is created and only

some of the leaves are materialized, following the work-

load. For example, the two leftmost children of the root

point directly to FBL p-buffers on disk; no query has

gone through this path. On the contrary, the rightmost

child of the root is split, leading to a subtree which

reaches down to two leaf nodes. This subtree is created

as a side-effect of a query requesting for data series that

belong in the leaf that is now marked as FULL in Fig-

ure 6(c).

3.4 Updates

Efficiently supporting index updates is an important

problem that has gathered a lot of attention [20,5]. ADS

Hard Disk

ROOT

PARTIAL
0* 0* 1*

00 00 10
00 00 11

ptr SAX
02
03

FULL
0* 0* 1*

ptr SAX

09
08 00 01 11

00 01 10
00 01 10

TS

 02 03

01
02

04
05

#

1103

Deleted records

Deleted records #

New records
(not yet materialized)

Ti
m

e

 t1: Insert 01, 02, 03
 t2: Leaf materialized
 t3: Insert 04, 05
 t4: Delete 02, 03

Leaf Instruction History

Full
File

Partial
File

Deleted
Records

0 0 1

Fig. 7 Insertions and Deletions in ADS.

has been designed to efficiently support updates (inser-

tions/deletions), as well. This process can be seen in

Figure 7, where we depict the status of the index after

a series of operations, involving insertions, leaf materi-

alizations and deletions.

Inserts. Insertions is the main scenario of interest

in data exploration environments, i.e., in a scientific

database new data is continuously created, but past

data is not discarded. Handling inserts in all ADS vari-

ations is done by simply appending the new data series

in the raw file, while only its iSAX representation and

its position in the raw file is pushed through the index

tree.

If the index leaf has already been materialized and

is in FULL mode, we create an additional PARTIAL

file where the new data series reside. We then set a bit

that informs us that the PARTIAL file is not empty. No

further actions are needed for partial leaves. If a future

query reaches a FULL leaf with pending inserts, then it

fetches the new inserts on-the-fly and merges them in

the leaf in the same way it is done for PARTIAL leaves

(as we discussed earlier).

Example 5 Figure 7 illustrates the example of a single

leaf in the presence of several updates. Initially this leaf

is empty, and at time t1, data series 01, 02 and 03 are

inserted. During t2 the leaf is materialized (as a result of

a query that had to access it). This results in the above

three data series to be part of the FULL file after t2.

In t3, two more data series are inserted, and as a result

they end up in the PARTIAL file. Since no query has

accessed this leaf after t3, the new data series is not

materialized.

ADS: The Adaptive Data Series Index 13

Deletes. When a data series needs to be deleted, we

simply mark the data series as deleted in its correspond-

ing leaf (via an in-memory per-leaf bit-vector). Whether

the leaf is partial or full does not make a difference.

Future queries ignore deleted data series, while future

insertions can exploit the space created in this leaf by

these ghost entries.

Example 6 This case is also depicted in the example of

Figure 7, where at time t4, data series 02 and 03 are

deleted. We update the in-memory bit-vector of deleted

records to include these two data series. Therefore, the

data series are marked as deleted and their locations

can be overwritten with new data.

In the case where a leaf becomes completely empty,

we destroy the leaf and clear the memory that it oc-

cupies. If that leaf had no siblings, the parent node is

also deleted. This process is propagated upwards until

we reach a node that has a non-empty sibling.

3.5 Full Index Construction: ADS-Full

In settings where a complete index is required, i.e.,

when there is a completely random and very large work-

load, a full index can also be efficiently constructed with

ADS. Our approach, called ADS-Full, is comprised of

two steps. In the first step, the ADS structure is built

by performing a full pass over the raw data file, storing

only the iSAX representations at each leaf. In the sec-

ond step, one more sequential pass over the raw data file

is performed, and data series are moved in the correct

pages on disk.

The benefit of this process is that it completely skips

costly split operations on raw data series: indeed, split

operations are performed only on iSAX summariza-

tions, and mostly within the bounds of main memory.

The reason is that iSAX summarizations correspond

merely to 1.5% of the raw data size, and as a result

1 TB of raw data series can be summarized with 16 GB

using iSAX summarizations. This means that a single

pass over the raw data file enables the construction of

the complete index using the iSAX summaries, entirely

in main-memory. In this case, all split operations are

performed in main memory, and the data structure is

flushed on disk only after the entire process has finished.

During the second step, the raw data file is read

again, and their appropriate locations on disk are iden-

tified by index lookup operations, as follows: we com-

pare the isax summary of each raw series to the ADS-

Full nodes during a single path traversal of the index,

until we identify the leaf node in which this series be-

longs in. These are mostly binary operations, and as

a result, extremely fast. Data are then buffered at the

LBL level, and when there is no more free main mem-

ory, they are sequentially flushed on disk. As we demon-

strate in the experiments section, this approach is 40%

faster than building the complete index using iSAX 2.0.

4 Exact Query Answering for ADS+

Approximate Search in ADS+ (Algorithm 7) works by

visiting the single most promising leaf, and calculating

the minimum distance to the raw data series contained

in it. This allows us to provide an approximate solution

that is close to the actual answer, while at the same

time controlling the time spent on reading raw data

from the index.

Exact Search on the other hand, requires visiting a

much larger part of the dataset, in order to guarantee

that the returned answer is truly the closest match to

the query in the entire collection. Traditionally, such

algorithms (like Algorithm 8 for ADS+) push index

nodes into a priority queue, based on their minimum

distance estimation. The “closest” ones are the nodes

visited first, and the answer is gradually refined as more

leaves are visited.

While a large number of raw data may be pruned,

the disk accesses involved in this process are random.

This is because the raw data-series for each leaf reside

on a different page of the disk, and leaves are visited in

a most-promising-first fashion. In this way, a significant

number of CPU cycles is wasted waiting for data to be

fetched from disk.

To overcome this problem, we propose a skip se-

quential scan algorithm: it employs approximate search

as a first step in order to prune the search space, it then

accesses the data in a sequential manner, and finally it

produces an exact, correct answer. We call this algo-

rithm Scan of In-Memory Summarizations (SIMS). The

main intuition is that while the raw data do not fit in

main memory, their summarized representations, which

can be orders of magnitude smaller, will fit. For exam-

ple, the size of a 16-segment iSAX representation for

a single data series is 16 bytes, while a raw data-series

of 256 float points is 1,024 bytes. The iSAX summaries

of 1 billion data series occupy merely 16GB in main

memory. By keeping these data in-memory and scan-

ning them, we can estimate a bound for every single

data series in the dataset.

The algorithm (refer to Algorithm 10) starts by

checking if the SAX data are in memory (lines 2-3),

and if not it loads them. It then proceeds to create

an initial best-so-far (BSF) answer (line 5), using the

Approximate Search algorithm of ADS+ (Figure 9(a)).

A minimum distance estimation is performed between

the query and each in-memory SAX record (lines 7-10),

14 Kostas Zoumpatianos et al.

Algorithm 10: exactSearchSIMS(dataSeries,

isax, index, queryTimeLeafSize, file)

1 // If SAX summaries are not in-memory, load them
2 if SAXSummarizations = ∅ then
3 SAXSummarizations = loadSAXFromDisk();

4 // Perform an approximate search
5 bsf = approxSearchADS+(dataSeries, isax, index,

queryTimeLeafSize);

6 // Compute minimum distances for all summaries
7 Initialize mindists[] array;
8 // Start multiple threads & compute bounds in parallel

parallelMinDistsCompute(mindists,
SAXSummarizations, dataSeries);

9 // Read raw data for unprunable records
recordPosition = 0;

10 for mindist ∈ mindists do
11 if mindist < bsf then
12 Move file pointer to recordPosition;
13 rawData = read raw data series from file;
14 realDist = Dist(rawData, dataSeries);
15 if realDist < bsf then
16 bsf = realDist;

17 recordPosition++;

18 return bsf

Hard Disk

PARTIAL
0* 1* 0*

ptr SAX
 04 00 10 00
 00 00 10 01
 01 00 10 01

Main Memory

01
02
03
04
05

Raw file
00

01
02
03
04
05

SAX
00

00 10 10

00 10 01
00 10 01
00 00 10
00 00 11

00 01 10

PARTIAL
0* 0* 1*

00 00 10
00 00 11
00 01 10

ptr SAX
02
03
05

Load

ROOT

 . . .

0 0 1

 . . .

0 1 0

Fig. 8 SIMS initial state.

using multiple parallel threads, operating on different

subsets of the data. For each lower bound distance es-

timation, if it is smaller than the real distance to the

BSF, we fetch the complete data series from the raw

data file and calculate the real distance (lines 12-14).

If the real distance is again smaller than the BSF, we

update the BSF value (lines 15-16).

Since the summaries array is aligned to the data

on disk, what we essentially do is a synchronized skip

sequential scan of the raw (on-disk) data and the (in-

memory) mindists array. This property allows us to

prune a large amount of data, while ensuring that we

do sequential reads in both main memory and on disk,

as well as enable modern multi-core CPUs to operate in

parallel on the data (the SAX summaries in this case)

stored in main memory. The algorithm finally returns

the final BSF to the user, which is the exact answer to

the query.

The initial state of the index is depicted in Figure 8,

where the SAX data can be seen alongside the index in

main memory. Initially, SIMS performs an Approximate

Search operation, performing adaptive splits and load-

ing data from the raw file as necessary. This can be seen

in Figure 9(a). Given a BSF solution produced by Ap-

proximate Search a multi-threaded process computes

the lower bounds to all in-memory summarizations and

a skip-sequential read of the raw file is performed. This

is shown in Figure 9(b).

It is important to notice, that SIMS works well even

in the degenerate case where our dataset comprises of

identical data series. In such a case, even a single exact

query could lead to the materialization of the complete

index. SIMS avoids this situation, since the rate with

which data are materialized is fixed across all queries,

and data loading happens only during the approximate

part of the algorithm.

5 Complexity Analysis

We now provide a space complexity analysis for ADS,

as well as a time complexity analysis for all the search

algorithms we have presented. Since the actual size of

the index as well as the time needed to answer each

query highly depends on the data distribution [66], we

concentrate in providing lower and upper bounds for

indexing and query answering.

Best Case. The ADS index is the most compact when

(after all adaptive split operations) it has the smallest

possible number of nodes, and all the leaf nodes are

completely full. If we have N data series, and all leaves

are full, then we have a total of lmin = dNthe leaves,

where th is the query-time leaf size. In order to have the

shortest possible tree, every level of the tree must have

the highest possible fan-out. If w is the number of iSAX

segments used, the root node of ADS has 2w children

that form binary trees. In the best case we have one

binary tree for every single root child, with d2(lmin

2w)−1e
inner (in-memory) nodes, and lmin

2w leaf (on-disk) nodes

each. In total, the smallest possible ADS index will have

nmin = 1 + 2w
⌈(
d N
th e

2w−1

)
− 1
⌉

nodes (1 root node, and

2w full binary trees with dNthe leaves equally distributed

among them).

Approximate search in this case requires the traver-

sal of a single path from the root of the index to one

ADS: The Adaptive Data Series Index 15

Main Memory

Hard Disk Adaptively Split Region

0 1 00

ROOT

0 1 00 0 1 01

01
02
03
04
05

Raw file
00

PARTIAL
0* 1* 00

ptr SAX
 04 00 10 00

01
02
03
04
05

SAX
00

00 10 10

00 10 01
00 10 01
00 00 10
00 00 11

00 01 10

0 0 1

PARTIAL
0* 0* 1*

00 00 10
00 00 11
00 01 10

ptr SAX
02
03
05

FULL
0* 1* 01

ptr SAX

02
01 00 10 01

00 10 01

TS

bs
f =

 a
pp

ro
x_

di
st

(a) ADS+ Approximate Search.

Main Memory

Hard Disk Adaptively Split Region

2

1 0 1 00

ROOT

0 1 00 0 1 01

01
02
03
04
05

Raw file

00

PARTIAL
0* 1* 00

ptr SAX
 04 00 10 00

01
02
03
04
05

SAX
00

00 10 10

00 10 01
00 10 01
00 00 10
00 00 11

00 01 10

0 0 1

PARTIAL
0* 0* 1*

00 00 10
00 00 11
00 01 10

ptr SAX
02
03
05

FULL
0* 1* 01

ptr SAX

02
01 00 10 01

00 10 01

TS

bs
f =

 a
pp

ro
x_

di
st

Skip
sequential
scan on disk

Skip when
mindist > bsf
or
update bsf

Multi-threaded
sequential scan

in memory

calculate
mindistsTh

re
ad

 N
Th

re
ad

 1
(b) Skip-sequential Scan using SAX.

Fig. 9 SIMS during query answering.

of the leaves. This is Θ
(
log2

(⌈
d N
th e
2w

⌉))
in-memory ac-

cesses and 1 disk read of size Θ(th) (th << N).

Worst Case. In the worst case, all data series in the

ADS index end up in just one of the root children nodes,

and all subsequent split operations are unable to sepa-

rate the data. This would happen only if all the data se-

ries were almost identical (in which case using an index

would be pointless anyways), and would result in an in-

dex with one single leaf (with leaf size thexpanded = N).

The maximum length of the path to this leaf depends

on the number of split operations. For w iSAX segments

and s bits per segment, the maximum number of split

operations is then w(s−1). Approximate search in this

case would require Θ(w(s−1)) in-memory accesses and

1 disk read of size Θ(N).

Exact Search. In the best case, exact search will need

to pay the cost of one approximate search and 2w in-

memory accesses for retrieving and pruning all the root

level children. This is a constant number of in-memory

accesses above approximate search. In the worst case,

exact search will access the entire index structure us-

ing random disk accesses. Things are different in the

case of SIMS, where it is ensured that all disk accesses

are sequential. In the best case, SIMS will do just one

approximate search and one complete scan over all the

iSAX summarizations. In a typical setting, this should

be around 1.5% of the raw data size. In the worst case,

SIMS will additionally need to perform one full sequen-

tial pass over the raw data file as well.

6 Experimental Evaluation

In this section, we present our experimental evalua-

tion. We demonstrate that adaptive data series index-

ing drastically reduces the initialization time, achiev-

ing up to one order of magnitude smaller data-to-query

time when compared to state-of-the-art approaches. We

show that our algorithms enable users to perform hun-

dreds of thousands of queries faster, while the index

creation cost is spread across multiple queries.

Algorithms. We benchmark all indexing methods pre-

sented in this paper and we compare all our adaptive in-

dexing variations against the state-of-the-art iSAX 2.0

index [11] that supports bulk loading. We also compare

against sequential scan, and two state-of-the-art multi-

dimensional indexes: R-Trees [23] and X-Trees [9]. Fi-

nally, we implemented several main-memory perfor-

mance optimizations in the iSAX 2.0 code: we use an

LRU buffer for recently queried nodes and also after

loading we maintain its last loading buffer in memory.

Infrastructure and Implementation. All the data

structures and algorithms presented, as well as an op-

timized version of iSAX 2.0, are built from scratch in

C and compiled with GCC 4.6.3 under Ubuntu Linux

12.04.2. We used an Intel Xeon machine with 64GB of

16 Kostas Zoumpatianos et al.

RAM and 4x 2TB, SATA, 7.2K RPM Hard Drives in

RAID0. All algorithms are tuned to make maximum

use of all available memory.

Datasets. We use several synthetic datasets for a fine

grained analysis, as well as 4 real datasets coming from

different domains, in order to demonstrate the useful-

ness of adaptive data series indexing in real-life scenar-

ios.

For the synthetic datasets, we used a random walk

data series generator. This is a generator, where a ran-

dom number is drawn from a Gaussian distribution

N(0, 1), then at each time point a new number is drawn

from this distribution and added to the value of the

last number. This kind of data generation has been

extensively used in the past [6,19,41,7,50,51,11], and

has been shown to effectively model real-world financial

data [19].

The real datasets are the following. The first dataset

(TexMex) [32] contains 1 Billion vectors representing

images. The second dataset (DNA) contains 20 Mil-

lion DNA sequences coming from the Homo Sapiens

and Rhesus Macaque genomes [12]. The third dataset

(Seismic) contains 100 Million seismic data series col-

lected from the IRIS Seismic Data Access repository [4].

Finally, the fourth dataset (Astro) contains 200 Mil-

lion astronomical data series representing celestial ob-

jects [52]. Each dataset is z-normalized before being

indexed. Unless mentioned otherwise, each data series

consists of 256 points and each point has a float preci-

sion of 4 bytes.

Workloads. The query workloads for every scenario

are random. Each query is given in the form of a data

series q and the index is trying to locate if this data

series or a similar one exist in the database. We study

query intensive workloads with various patterns, includ-

ing skewed workloads, as well as update workloads (the

details are provided in the description of the experi-

ments).

6.1 Reducing the Data to Query Time

In our motivation discussion in the introduction section,

we discussed Figure 1 as an example that demonstrates

the limits of state-of-the-art indexing techniques. For

this experiment, we used a synthetic data set of up to

1 billion data series (1 TB) and 105 random queries

(73% of which need to fetch new data from the raw

file). The main observation is that as we try to index

more and more data, the initialization time to build a

state-of-the-art data series index becomes a prohibitive

factor. With 1 billion data series it takes more than a

full day in order to index all data using the state-of-

0	

5	

10	

15	

20	

25	

30	

2K	
 5K	
 10K	
 20K	
 40K	
 2K	
 5K	
 10K	
 20K	
 40K	

iSAX	
 2.0	
 ADS	
 Leaf	
 Size	

Indexing	
 (Input)	

Indexing	
 (Output)	

Indexing	
 (CPU)	

To
ta
l	
 c
os
t	
 f
or
	
 in
de

x	

bu

ild
in
g	

(H
ou

rs
)	

Fig. 10 Reducing indexing costs.

the-art iSAX 2.0 index even when a preferable leaf size

is used (Figure 1).

Minimizing Indexing Costs. Let us now see how the

adaptive data series indexing ideas can help in reducing

the index building costs. In this experiment, we use the

same set-up as before, but we now use a constant data

size of 500 million data series and we vary the leaf size.

We test iSAX 2.0 against ADS.

Figure 10 depicts the results, where we show the

total time needed to index all data. ADS drastically

reduces the index build time compared to iSAX 2.0 re-

gardless of the leaf size. For example, for the case of a

leaf size of 20K data series, which is the best case for

iSAX 2.0 (we elaborate on this choice in the following

paragraphs), ADS builds the index in only half an hour,

while iSAX 2.0 needs 8 hours.

The breakdown of the indexing costs in Figure 10

explains this behavior. Input is the time spent reading

data from disk. Output is the time spent writing data to

disk. CPU is the time spent doing any kind of computa-

tion during indexing. ADS avoids the expensive steps of

placing each data series in its corresponding leaf node.

The net result is that the Input and Output costs, i.e.,

the I/O costs, drop drastically compared to iSAX 2.0.

At the same time, also the CPU cost drops as ADS does

not have to go through the index to place each data se-

ries. Overall, reducing the I/O and CPU costs results

in a major benefit for ADS during the indexing phase.

The Query Processing Bottleneck of Plain ADS.

Having seen that ADS can reduce the indexing costs,

let us now see the effect on query processing. Figure

11 shows the results. Using the same set-up as in the

previous experiment, it depicts the total time to build

the index and to process all 105 queries. There are two

observations from the behavior seen in Figure 11. First,

ADS allows its first few queries to access the data faster

than iSAX 2.0. For example, if we take the best leaf size

case for ADS (2K) and the best leaf size case for iSAX

2.0 (20K), we see (marked with the red arrow) that

ADS: The Adaptive Data Series Index 17

0	

5	

10	

15	

20	

25	

30	

35	

40	

45	

2K	
 5K	
 10K	
 20K	
 40K	
 2K	
 5K	
 10K	
 20K	
 40K	

iSAX	
 2.0	
 ADS	
 Leaf	
 Size	

Indexing	
 (Input)	

Indexing	
 (Output)	

Indexing	
 (CPU)	

Querying	
 (Total)	

217	

511	
 958	

1986	

3518	

In
de

xi
ng
	
 a
nd

	
 q
ue

ry
in
g	

co
st
	
 (H

ou
rs
)	

Fig. 11 The query processing bottleneck.

ADS can answer 12,700 queries by the time iSAX 2.0

is still indexing and has not answered a single query

(9 hours). In this way, ADS provides a quick gateway

to the data as it was the original intention and moti-

vation. However, as we process more and more queries

and regardless of the leaf size, ADS looses its initial

advantage; queries take too long to process and overall

ADS does not present a feasible solution.

The main reason why ADS suffers is that even a sin-

gle query might result in fetching a significant amount

of raw data series. For example, if a query reaches a

leaf which is not yet materialized and the leaf size is

set to 2K, then ADS needs to fetch 2K raw data series

in order to materialize the leaf. Such costs, significantly

penalize queries and in the case of random workloads,

as in the example of Figure 11, where each query may

hit a completely different area of the index, this brings

a significant overall cost. In a more focused workload,

i.e., where queries focus on a given part of the index,

the overall performance is drastically different as we do

not reach the point where we need to fetch extra raw

data very often. We discuss such examples later on.

Still though, ADS does not represent a robust solu-

tion, i.e., a solution that would be globally applicable

in arbitrary workloads.

Robustness with ADS+. This is exactly the motiva-

tion for ADS+. ADS+ maintains the adaptive proper-

ties of ADS but it is also robust and scalable. To demon-

strate this behavior, we repeat the previous experiment,

this time using also ADS+. Figure 12 shows that ADS+

significantly outperforms iSAX 2.0 not only during the

index building phase but also during the query process-

ing phase. For example, for the best case of iSAX 2.0,

i.e., with leaf size 20K, ADS+ can create the index and

process all 105 queries in only 3 hours while iSAX 2.0

needs roughly 15 hours. In fact, ADS+ can process the

queries even faster as it may use even smaller leaf sizes.

Next, we show that ADS+ is robust even when in in-

ferior set-up. Using the same set-up (data and queries)

0	

5	

10	

15	

20	

25	

30	

2K	
 5K	
 10K	
 20K	
 40K	
 2K	
 5K	
 10K	
 20K	
 40K	

iSAX	
 2.0	
 ADS+	

Leaf	
 Size	

Indexing	
 (Input)	

Indexing	
 (Output)	

Indexing	
 (CPU)	

Querying	
 (Total)	

In
de

xi
ng
	
 a
nd

	
 q
ue

ry
in
g	

co
st
	
 (H

ou
rs
)	

Fig. 12 Reducing the data-to-query time with ADS+.

0	

5	

10	

15	

20	

25	

30	

35	

100%	
 75%	
 50%	
 25%	
 10%	
 5%	
 100%	
 75%	
 50%	
 25%	
 10%	
 5%	

ADS+	
 Buffered	
 iSAX	
 2.0	
 In
de

xi
ng
	
 a
nd

	
 q
ue

ry
in
g	

co
st
	
 (H

ou
rs
)	

Buffer	
 size	
 (%	
 of	
 total	
 memory)	

Indexing	
 (Input)	

Indexing	
 (Output)	

Indexing	
 (CPU)	

Querying	
 (Total)	

Fig. 13 Total indexing and query answering cost as we in-
crease the buffer size for ADS+ and iSAX 2.0.

as before, we vary the available memory the algorithms

can exploit. In addition, for iSAX 2.0 we use a buffer

pool with an LRU policy so that it can hold recently

visited nodes in memory. In Figure 13, it can be seen

that even if we use 10% of the main memory for ADS+,

it can still answer all of the 105 queries before iSAX 2.0

has finished indexing using 100% of the main memory.

The main novelty in ADS+ is that it can maintain

a lightweight index-building step due to only partially

building the index but also due to using a large leaf size

during this phase. Then, as queries arrive, it adaptively

splits leaves in hot areas of the index such that queries

in this area may be processed at a smaller cost. In this

way, ADS+ solves the robustness and scalability prob-

lem of ADS by introducing adaptive node splits, i.e.,

by being able to adjust the shape of the index based on

the workload and only for the areas which are hot and

may cause expensive steps for individual queries.

Choosing the Query-Time Leaf Size. The query-

time leaf size indicates the finest granularity in which

we will split a node with ADS+, and consequently it

is directly related to the amount of raw data that we

store on disk under each leaf. We have experimented

with various query-time leaf sizes ranging from 1 data-

18 Kostas Zoumpatianos et al.

0	

10	

20	

30	

40	

50	

60	

500M	
 750M	
 1B	
 500M	
 750M	
 1B	
 500M	
 750M	
 1B	

iSAX	
 2.0	
 ADS	
 ADS+	

Dataset	
 Size	

Indexing	
 (Input)	

Indexing	
 (Output)	

Indexing	
 (CPU)	

Querying	
 (Total)	

217	

220	

235	

In
de

xi
ng
	
 a
nd

	
 q
ue

ry
in
g	

co
st
	
 (H

ou
rs
)	

Fig. 14 Scaling to 1 billion data series.

series to 1000 data-series, and measured the average

page utilization for 3 different page sizes, as well as the

average query answering time. We did this by running

105 queries on a dataset of 500 million data-series. As

we can see in Table 1, the smaller the query-time leaf

size is, the less data we have to fetch from the raw data

file, and the faster the materialization of the leaf node

is. On the other hand, very small values of query-time

leaf size adversely affect space utilization, since page

occupancy will be small. As a result, it is important to

choose a leaf size that will allow for the maximum page

utilization while at the same time offers an acceptable

query answering time. For the rest of our experiments

we use 10, since when using a page size of 8KB, we

maximize page occupancy at around 89% (Table 1 in

bold) and the average query answering time remains

relatively low at 69 milliseconds.

Query-time leaf size 1 10 100 1000

Query time (millisec.) 11.27 67.64 499.95 4031.68
of 4KB pages 0.25 1.79 17.23 171.48
of 8KB pages 0.12 0.89 8.61 85.74
of 16KB pages 0.06 0.45 4.30 42.87

Table 1 Varying query-time leaf size.

Scaling to 1 Billion Data Series. Next, we stress all

indexing strategies to study how they can cope with an

increasing data set size. We study the behavior up to

1 billion data series and with 105 random queries. Re-

garding leaf sizes, we use the optimal leaf size observed

for each index strategy, i.e., 20K for iSAX 2.0, 2K for

ADS, and for ADS+ 2K build-time and 10 query-time

leaf size. Figure 14 shows the total time to build the in-

dex and answer all queries. Across all data sizes, ADS+

consistently outperforms all other strategies by a big

margin.

For 1 billion data series, ADS+ answers all 105

queries in less than 5 hours, while iSAX 2.0 needs more

than 35 hours.

By adaptively expanding the tree and adjusting leaf

sizes only for the hot workload parts, ADS+ enjoys a 7x

gain over full indexing in iSAX 2.0. In addition, ADS+

significantly outperforms ADS; even though ADS can

significantly reduce indexing costs for all data sizes, as

we process more and more queries it suffers due to the

high cost of fetching unindexed data series for large

leaves during query processing. ADS+ avoids this prob-

lem by adaptively splitting its leaves. Also, the rate at

which the cost of ADS+ grows is significantly smaller

than that of iSAX 2.0; For example, going from 500M

to 1B data series, iSAX 2.0 needs more than twice the

time, while ADS+ enjoys a sub-linear cost increase.

Figure 15 provides further insights. Figure 15(a) de-

picts the number of queries that ADS+ can answer

within the time that iSAX 2.0 is still indexing. The

bigger the data set, the more queries ADS+ can an-

swer before iSAX 2.0 answers even a single query; for

the case of 1 Billion data series ADS+ manages to an-

swer nearly 3 ∗ 105 queries while iSAX 2.0 is still in-

dexing. this verifies the fact that ADS+ is more suited

towards very large data sets compared to traditional

non-adaptive indexing approaches.

Data Touched. In addition, Figure 15(b) shows the

amount of data actually touched (indexed) as the query

sequence evolves. To see the long term effect, we let a

big number of queries run, i.e., 107 queries. For iSAX

2.0 the behavior in Figure 15(b) is a flat curve as every-

thing is indexed blindly up front. With ADS and ADS+

though, we index a much smaller percentage of the data;

as more queries are processed, more data is indexed and

only when needed. While ADS indexes all data by the

time it processes 106 queries, ADS+ manages to touch

even less data; since it splits leaves adaptively to much

smaller sizes it needs to materialize much smaller leaves

and thus it touches less data overall. In this way, even

after 107 queries it has touched only 10% of the data,

while it needs more than 190M queries in order to touch

all the data (i.e., completely build the index). In fact,

since this is a random workload, this is the worst case

for adaptive indexing as most queries lead to fetching

raw data series and enriching the index. This is why

ADS has touched all data by query 106; most queries

will need to materialize a partial leaf and thus they need

to fetch 2∗103 new data series (its leaf size); 2∗103∗106

adds up to well above 109 (the data set size). On the

contrary, ADS+ uses a query-time adjustable leaf size

of only 10 data series; thus even if all queries need to

fetch new data, by query 107 we would have fetched at

most 108 data series which is about the 10% (of the

original 109 data set) we see in Figure 15(b). By doing

less work and only when necessary, ADS+ allows users

to have quick access to their data.

Per Query Performance. We continue our study

with a discussion that focuses on the individual query

performance based on the previous 1 Billion data series

ADS: The Adaptive Data Series Index 19

0	

50	

100	

150	

200	

250	

300	

500M	
 750M	
 1B	

Dataset	
 Size	
 #	

of
	
 q
ue

rie
s	
 a

ns
w
er
ed

	
 b
y	

AD

S+
	

w
hi
le
	
 iS
AX

	
 2
.0
	
 w
as
	
 s=

ll	

in
de

xi
ng
	

x10	
 3	

(a) # of queries answered.

0.0000001

0.00001

0.001

0.1

10

1 10100100010000100000100000010000000100000000

Query sequence

iSAX 2.0
ADS
ADS+

%
 o

f
d

at
a

lo
ad

e
d

102

100

10-2

10-4

10-6

 100 102 104 106 108

1TB

10GB

100MB

1MB

10KB

(b) Percentage of data indexed.

1
10

100
1000

10000
100000

1000000
10000000

1 10 100100010000100000100000010000000
Query sequence

Linear Scan
iSAX 2.0
ADS+

107

105

103

101

100 101 102 103 104 105 106 107

Cu
m

ul
at

iv
e

qu
er

y
co

st
 (H

ou
rs

)

(c) Per query response time.

1	

10	

100	

1000	

10000	

X-­‐Tr
ee	

R-­‐Tr
ee	

KD-­‐
Tree

	

iSAX

	
 2.0
	

ADS
+	

In
de

xi
ng
	
)
m
e	

(M

in
ut
es
)	

Projec6on:	
 stopped	
 at	
 50	
 hours	

(d) ADS+ against spatial indexes.

Fig. 15 Reducing the data-to-query time with ADS+ as we scale to big data.

experiment and 10 Million random queries. Here we also

include the scan strategy, i.e., when we do not build an

index; instead, every query performs a complete scan

over all data series. We will not use ADS from now on

as ADS+ consistently outperforms ADS.

Figure 15(c) shows the cumulative per query re-

sponse time as the query sequence evolves. The scan

strategy has a constant but slow response time; every

query adds the same cost to the total cumulative costs.

Eventually, the scan strategy becomes prohibitive if we

want to repeatedly query the same big data; it takes

close to 105 hours to handle all queries. iSAX 2.0 pays

a big cost to build the index (this is included in the

cost of Query 1) but then queries are very fast, i.e.,

the cumulative cost curve is flat as every query adds

very little cost. Once the index is built, every iSAX 2.0

query incurs a constant cost; still though there is a big

bottleneck to access the data due to the high indexing

costs which means that the first query needs to wait

for several hours. On the contrary, ADS+ enjoys quick

data access time; it finishes building the index and an-

swering all queries by the time iSAX 2.0 is still indexing

and has not answered a single query.

In fact, while the crossover point of the scan strat-

egy with iSAX 2.0 is at about 35 queries, for ADS+ it

is only at 2 queries. This means that for iSAX 2.0 to be

useful we need to fire at least 35 queries while ADS+

starts bringing gains already after the first 2 queries.

Moreover, while the average query answering time for

ADS+ is about 50 milliseconds, that of iSAX 2.0 is 200

milliseconds. In other words, iSAX 2.0 is never going

to amortize its initialization overhead over ADS+ and

thus it is always beneficial to use adaptive indexing as

opposed to full a priori indexing. This is because of the

larger leaf size that is used by iSAX 2.0, in order to

reduce the index building time by compromising query

times a bit. On the other hand, ADS+ adaptively splits

leaves for the hot part of the data and thus it can re-

duce access times even further. Furthermore, the cost

of query answering for ADS+ (essentially, materializ-

ing the data of the leaf) increases linearly with leaf

utilization. This cost ranges from 20ms when the leaf

is already materialized to 160ms when the leaf contains

all 10 data-series that need to be loaded from the raw

file. When ADS+ needs to perform splits, the query

answering times are 129ms for 1-10 splits, 138ms for

10-20 splits, 148ms for 20-30 splits, and 160ms for 30-

40 splits. All these times are significantly smaller than

the required time to answer a query using serial scan

(more than 46min).

6.2 ADS+ vs. Multi-dimensional Indexes

One interesting question is how indexes which are tai-

lored for data series search compare against state-of-

the-art spatial indexes. In this experiment, we compare

ADS+ and iSAX 2.0 against KD-Tree [8], R-Tree [23],

and X-Tree [9], a state-of-the-art adaptive version of

R-Tree. X-Tree creates a tree with minimal overlap be-

tween nodes and it allows for variable sized nodes in or-

der to accommodate minimum overlapping. Such spa-

tial indexes can be used for indexing data series and

performing similarity search; the main idea is that we

can use the PAA representations of data series to create

a KD-Tree, an R-Tree, or an X-Tree.

Here, we use a set of 100 million data series. In all

the cases, the amount of dimensions for the reduced

dimensionality PAA representation is set to 16 while

the original size of each data series is 256 points. Fig-

ure 15(d) depicts the time needed to complete the index

building phase for each index. Overall, both data se-

ries tailored indexes, iSAX 2.0 and ADS+, significantly

outperform the more generic spatial indexes. For ex-

ample, iSAX 2.0 is one order of magnitude faster than

R-Tree while ADS+ is two orders of magnitude faster,

and more than an order of magnitude faster than KD-

Tree. The raw benefit comes from the fact iSAX 2.0 and

ADS+ are tailored to perform efficient comparisons of

SAX representations (with bitwise operations). ADS+

being adaptive enjoys further benefits as we discuss

20 Kostas Zoumpatianos et al.

1

10

100

1000

10000

100M inserts

before

100K queries

10M inserts

every

10K queries

1M inserts

every

1K queries

100K inserts

every

100 queries

10K inserts

every

10 queries

1K inserts

every

1 query

Rate and frequency of insertions

ADS+ iSAX 2.0

In
d

e
x

in
g

 a
n

d
 q

u
e

ry
in

g
 c

o
st

 (
M

in
u

te
s)

Fig. 16 Updates for 100 million data series and 100 thousand
queries in 6 different batch sizes.

in previous experiments as well. X-Tree is significantly

slower as a result of its more expensive index build-

ing phase which focuses on minimizing overlap between

nodes. Naturally, this helps query processing times as

less overlap allows queries to focus faster on data of

interest. However, as we have shown throughout the

analysis in this paper, as we scale to big data, index

building is the main bottleneck and thus X-Tree is pro-

hibitively expensive.

6.3 Adaptive Behavior under Updates

In our next experiment we study the behavior of ADS+

and iSAX 2.0 with updates. We use a synthetic data set

of 100 million data series and 105 random queries. This

time, queries are interleaved with updates. In particu-

lar, we perform the experiment in 6 steps. Each time

a varying number of new data series arrive and at dif-

ferent query intervals. Figure 16 shows the results. The

first set of bars represents the case where all data has

arrived up front and all queries run afterwards. The

second set of bars (10M inserts every 10K queries) rep-

resents a scenario where every 104 queries 107 new data

series arrive until we reach a total of 108 data series (i.e.,

the complete data set) and a total of 105 queries (i.e,

the complete query workload). Similarly, the rest of the

bars vary the frequency and the rate of incoming data

until the extreme case where we get 1000 new insertions

after every single query.

In all cases, ADS+ maintains its drastic perfor-

mance advantage over iSAX 2.0. When all data arrives

up front, the cost is naturally higher; more data has

to be queried. For the rest of the cases where data

arrives incrementally, interleaving with queries, we ob-

serve that when data arrives more frequently the overall

cost increases slightly. This is a result of both the fact

that merging of updates needs to happen more often

and of the fact that more queries need to be processed

against more data. However, even in the extreme case

0	

2	

4	

6	

8	

10	

12	

iSAX	
 2.0	
 ADS+	

Algorithm	

Querying	
 (Total)	

Indexing	
 (CPU)	

Indexing	
 (Output)	

Indexing	
 (Input)	

In
de

xi
ng
	
 a
nd

	
 	

qu

er
yi
ng
	
 c
os
t	
 (
Ho

ur
s)
	

(a) Total cost.

0	

2	

4	

6	

8	

10	

12	

#	
 Queries	
 	

iSAX	
 2.0	

ADS+	

1	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 5K	
 10K	
 2.5K	
 7.5K	

Cu
m
ul
a-

ve
	
 p
er
	
 	

qu
er
y	

co
st
	
 (H

ou
rs
)	

(b) Cumulative per query costs
(Query 1 includes indexing).

Fig. 17 (TexMex) Indexing 1 Billion images (SIFT vectors)
and answering 104 queries.

where we receive 1000 new data series after every query,

ADS+ maintains its adaptive behavior and good per-

formance being able to outperform static iSAX 2.0 by

2 orders of magnitude.

The behavior under deletions is similar. For example

in experiments with a data set of 100 million data series,

indexed by ADS+, we could perform deletions with an

average deletion time at 0.2 milliseconds.

6.4 Reducing the Data-to-query Time

in Real-life Workloads

Here, we demonstrate the ability of ADS+ to drastically

reduce the data-to-query time in real-life scenarios with

real data. In all cases, we use the optimal settings found

in the synthetic benchmarks: for iSAX 2.0 uses a leaf

size of 20K data series, while ADS+ uses a build time

leaf size of 2K data series which adaptively drops down

to 10.

Texmex Corpus (TexMex). The first real-life sce-

nario is an image analysis scenario from the Texmex
corpus [32]. This dataset contains 1 Billion images

which are translated into a set of 1 Billion data series

(SIFT feature vectors) of 128 points each. The scenario

is that a user is searching the corpus for images sim-

ilar to an existing image that they already have. The

corpus also contains 104 such example queries together

with information about which image in the corpus is

the nearest neighbor, i.e., the most similar one, for each

query.

Figure 17 shows the results. Figure 17(a) shows the

total cost to go through the indexing phase and to pro-

cess all queries. ADS+ maintains its drastic gains as

we have seen in the synthetic benchmarks study. Over-

all, ADS+ finishes answering all queries 6 times faster

compared to iSAX 2.0. It is interesting to mention that

ADS+ gains not only during the indexing phase but

also during the query processing phase, i.e., the time it

takes to answer all 104 queries is smaller with ADS+.

This is because these real-life queries are not completely

random, i.e., the workload focuses in specific areas of

ADS: The Adaptive Data Series Index 21

0	

1	

2	

3	

iSAX	
 2.0	
 ADS+	

Algorithm	

Querying	
 (Total)	

Indexing	
 (CPU)	

Indexing	
 (Output)	

Indexing	
 (Input)	

In
de

xi
ng
	
 a
nd

	

	
 q
ue

ry
in
g	

co
st
	
 (H

ou
rs
)	

(a) Total cost.

0	

1	

2	

3	

iSAX	
 2.0	

ADS+	

1	
 200K	
 400K	
 300K	
 100K	

#	
 Queries	

Cu
m
ul
a-

ve
	
 p
er
	
 	

qu
er
y	

co
st
	
 (H

ou
rs
)	

(b) Cumulative per query costs
(Query 1 includes indexing).

Fig. 18 (DNA) Indexing 20 Million DNA subsequences from
the Homo Sapiens genome and answering 4 ∗ 105 queries.

the index. In such cases, ADS+ has the benefit of work-

ing on an index which essentially contains less data; it

has loaded only the data which are relevant for the hot

workload set.

Figure 17(b) helps to understand this behavior even

more by demonstrating the evolution of the query pro-

cessing costs, i.e., the graph shows how the indexing

and query processing costs evolve through the query

sequence for each indexing strategy. For iSAX 2.0 the

first query needs to wait until the whole index is built

which takes almost 12 hours. From there on, each query

can be processed quite fast. On the contrary, ADS+ al-

lows the first query to access the data in less than 2

hours, while by the time we reach the 2 hours mark all

104 queries have been processed. Overall, ADS+ pro-

cess all queries in just 2 hours, while iSAX 2.0 needs

more than 11 hours just for the indexing phase and

without processing a single query.

DNA Data (DNA). The second real-life scenario

comes from the biology domain. This dataset contains

the full genome of the Homo Sapiens (human) which

is translated into 20 Million data series of 640 points

each, obtained using a sliding window of size 16000,

down-sampled by a factor of 25. The scenario is that

a user is trying to identify subsequences of the human

genome that match subsequences in other genomes. In

this way, we create our queries from the genome of the

Rhesus Macaque ape which is also translated into 20

Million data series of 640 points each, obtained in the

same manner, and each one of these data series can be

used as a query against the human genome in search

for similar patterns.

Figure 18 shows the results. Similarly to previous

experiments, ADS+ brings a significant benefit both in

terms of total costs and in terms of per query costs.

With ADS+ we can index the data and process all

queries 3 times faster, i.e., only after one hour, while

with iSAX 2.0 we need to wait for 3 hours. Compared

to previous performance examples, it is interesting to

note that in this experiment we have a very different

0	

10	

20	

30	

40	

iSAX	
 2.0	
 ADS+	

Algorithm	

Querying	
 (Total)	

Indexing	
 (Other)	

Indexing	
 (Output)	

Indexing	
 (Input)	

In
de

xi
ng
	
 a
nd

	

	
 q
ue

ry
in
g	

co
st
	
 (M

in
ut
es
)	

(a) Total cost.

0	

10	

20	

30	

40	

1	
 2K	
 4K	
 6K	
 8K	
 10K	

#	
 Queries	

iSAX	
 2.0	

ADS+	

Cu
m
ul
a-

ve
	
 p
er
	

	
 q
ue

ry
	
 c
os
t	
 (
M
in
ut
es
)	

(b) Cumulative per query costs
(Query 1 includes indexing).

Fig. 19 (Seismic) Indexing 100 Million seismic data series
and answering 104 queries.

0	

0.5	

1	

1.5	

iSAX	
 2.0	
 ADS+	

Algorithm	

Querying	
 (Total)	

Indexing	
 (Other)	

Indexing	
 (Output)	

Indexing	
 (Input)	

In
de

xi
ng
	
 a
nd

	

	
 q
ue

ry
in
g	

co
st
	
 (H

ou
rs
)	

(a) Total cost.

0	

0.5	

1	

1.5	

1	
 2K	
 4K	
 6K	
 8K	
 10K	

#	
 Queries	

iSAX	
 2.0	

ADS+	

Cu
m
ul
a-

ve
	
 p
er
	

	
 q
ue

ry
	
 c
os
t	
 (
Ho

ur
s)
	

(b) Cumulative per query costs
(Query 1 includes indexing).

Fig. 20 (Astro) Indexing 200 Million astronomical data se-
ries and answering 104 queries.

data to queries ratio, i.e., we have a relatively small

data set of 20 Million data series and a relatively big

query set of 4∗105 queries. Thus, the indexing cost is a

much smaller factor of the total cost compared to pre-

vious experiments. Still though, ADS+ brings a major

benefit and shows a scalable behavior, mainly due to

its ability to adapt its shape to workload patterns, by

expanding sub-trees and adjusting leaf sizes on-the-fly.

Seismic Data (Seismic). The third real life scenario

is one that comes from seismology. We used the IRIS

Seismic Data Access repository [4] to gather data se-

ries representing seismic waves from various locations.

We obtained 100 million data series of size 256 using a

sliding window with a resolution of 1 sample per sec-

ond, sliding every 4 seconds. The complete dataset size

was 100GB. We additionally obtained 10,000 data se-

ries with the same technique to be used as queries. We

used iSAX 2.0 and ADS+ to index the data and an-

swer all the queries in the workload. Figure 19 shows

the results. ADS+ can index the data more than 4 times

faster than iSAX 2.0. With ADS+ we need to wait just

under 6 minutes before we fire our first query, while

iSAX 2.0 needs more than 25 minutes. In regards to

query answering, we are able to index the data and an-

swer all the 104 queries in 11 minutes with ADS+, while

iSAX 2.0 requires 37 minutes to complete the same task.

Astronomical Data (Astro) In the last real scenario,

we used astronomical data series representing celestial

22 Kostas Zoumpatianos et al.

Workload Cross-over point (PADS+ over ADS+)

Random 2899 queries
Low skew 2970 queries

Medium skew 3097 queries
High skew 3825 queries

Table 2 Fast access with PADS+ with varying skew.

objects [52]. The dataset comprised of 200 million data

series of size 256, obtained using a sliding window with

a step of 1. The total dataset size was 200GB. We ob-

tained an additional 10,000 data series from the raw

dataset using the same technique to be used as a query

workload, and used both iSAX 2.0 and ADS+ to answer

the complete workload. Figure 20 shows the results. In

this case, ADS+ is more than 6 times faster in index-

ing time than iSAX 2.0. With ADS+ we need to wait

about 12 minutes before we fire our first query, while

iSAX 2.0 needs more than 75 minutes. In regards to

query answering, we are able to index the data and an-

swer all 104 queries in less than 20 minutes with ADS+,

while iSAX 2.0 requires 1.5 hours.

6.5 Providing Quick Insights with PADS+

Having shown that it is possible to reduce the user

waiting time, without excessively penalizing the query

answering time, we now show that we can achieve

even faster access to the data for skewed workloads. In

this experiment we analyze the performance of ADS+,

PADS+ and iSAX 2.0 over a dataset of 1 billion data se-

ries and a varying set of query workloads, ranging from

completely skewed to completely random queries. In to-

tal, we run 104 queries. For low skew, 60% of the queries

are picked from 40% of the domain. In the medium skew

workload, 80% of the queries are picked from 20% of the

domain, while for the high skew workload 99.99% of the

queries are picked from 0.01% of the domain.

For all workloads both ADS+ and PADS+ signifi-

cantly outperform iSAX 2.0 being 10 to 20 times faster.

iSAX 2.0 needs about 28 hours to index all data and

process all queries with the bulk of the time spent in

indexing (included in the cost of Query 1). Both ADS+

and PADS+ can do so in less than 1.5 hours for 103

queries, and less than 3 hours for 104 queries. ADS+

improves slightly as skew increases; less data has to be

fetched from outside the index. PADS+, though, as seen

in Table 2, manages to improve performance even more

as skew increases, being faster than ADS+ and iSAX

2.0 for all skewness levels for the first 2000 queries and

for almost 4000 queries in the case of high skewness.

When the workload is skewed, this means that PADS+

can focus on certain parts of the index tree and avoid

0	

5	

10	

15	

20	

25	

30	

500M	
 750M	
 1B	
 500M	
 750M	
 1B	

iSAX	
 2.0	
 ADS-­‐Full	

In
de

xi
ng
	
)
m
e	

(H
ou

rs
)	
 0	

50	

50
0

75
0 1B
	

50
0

75
0 1B
	

iSAX	
 2.0	
 ADS-­‐Full	

Indexing	
 (Input)	

Indexing	
 (Output)	

Indexing	
 (CPU)	

Fig. 21 ADS-Full constructs the complete index in 38% of
the time that iSAX 2.0 requires for 1B data series.

node splits and disk spilling once it optimizes the index

for the hot part.

While ADS+ provides the best overall solution be-

ing both fast and robust, PADS+ provides an attractive

solution when we know we want to fire only a few thou-

sands of queries.

6.6 Fast Full Index Construction

In this subsection, we demonstrate the benefits of ADS-

Full for index initialization even when building the

whole index in one step. For this experiment, we in-

dexed 500M, 750M and 1B randomwalk generated data

series of size 256, and compared ADS-Full with iSAX

2.0. Note that the indexes created by both ADS-Full

and iSAX 2.0 are exactly the same: they contain the

same inner nodes, and the same leaf nodes (along with

the same corresponding raw data series). Following our

earlier discussion, for both iSAX 2.0 and ADS-Full we

used a leaf size of 20K.

The results are depicted in Figure 21. We observe

that for 500M and 750M data series, ADS-Full requires

48% of the time of iSAX 2.0 in order to build the full

index, while for the case of 1B data series ADS-Full

completes the task in just 38% of the time required by

iSAX 2.0. These results demonstrate that our approach

outperforms the state of the art, even for the task of

building a full index, for which iSAX 2.0 was initially

designed.

6.7 Efficient Exact Query Answering using SIMS

In this subsection, we explore the benefits of using the

SIMS algorithm for answering exact queries.

Setup. We use both ADS+ and iSAX 2.0 to index 5

random walk generated datasets with sizes of 100K, 1M,

10M, 100M, and 1B data series of length 256. Each

data series has a record size of 1024 bytes. We generate

queries by adding Gaussian noise to randomly selected

ADS: The Adaptive Data Series Index 23

●
●

●

●

●

10 sec

1 min

5 min
10 min
30 min
1 hour

5 hours
10 hours
30 hours
60 hours

100K 1M 10M 100M 1B
Dataset Size

T
im

e

●
iSAX 2.0

ADS+

(a) Indexing times.

●●

●
●

●

●

●

●

100K 1M 10M 100M 1B
Dataset Size

●
●

Serial Scan

iSAX 2.0

ADS+

ADS+ (SIMS)

(b) Querying times.

●●

●
●

●

●

●

●

100K 1M 10M 100M 1B
Dataset Size

●
●

Serial Scan

iSAX 2.0

ADS+

ADS+ (SIMS)

(c) Indexing and querying
times combined.

●

●

●

5 min
10 min
30 min

1 hour

5 hours
10 hours

30 hours
60 hours

100K 1M 10M 100M 1B
Dataset Size

E
xt

ra
 ti

m
e

on
 to

p
of

 A
D

S
+

 (
in

de
xi

ng
 &

 1
00

 q
ue

rie
s)

●

Serial Scan

iSAX 2.0

ADS+

(d) Extra time on top of ADS+
(with SIMS) for all other methods.

Fig. 22 Indexing 1 billion data series and issuing 100 exact queries.

data-series from the original dataset. The more noise we

add, the harder the queries become, as they drift away

from their nearest neighbor. We use queries with vary-

ing amounts of noise, in order to test the algorithms

under different conditions. For each dataset we gener-

ate 100 queries, and use the following four methods to

answer them.

– Serial Scan. This is a baseline approach, which has

been shown to outperform the exact search of iSAX

2.0 in several cases [34]. We answer each query by

performing a full sequential scan of the raw data

file. This method implements the early abandoning

technique, where we stop scanning and evaluating

the distance for a data series when this distance

becomes greater than the best-so-far solution.

– iSAX 2.0. This is the exact search algorithm of

iSAX 2.0. We use the complete iSAX 2.0 index that

we have built beforehand and visit nodes in a most-

promising-first fashion. All nodes are pushed in a

queue and the one with the minimum lower bound

is popped. If this node is a leaf, then we check the

full data series, retrieved from disk.

– ADS+. This is ADS+ implementing the exact

search algorithm of iSAX 2.0. The only difference is

that when we visit leaf nodes we first perform adap-

tive split operations and then load the data from

the raw data file in the index.

– ADS+ (SIMS). This is the SIMS exact search al-

gorithm. We load all the iSAX representations in

main memory and perform a multi-threaded lower

bound calculation. We then visit the data on the raw

file for only the records with a lower bound less than

the best-so-far solution obtained using Approximate

Search.

We have removed the square root computation from the

Euclidean Distance, for all the above approaches.

Evaluation. In Figure 22(a), we plot the indexing time

for both iSAX 2.0 and ADS+. Serial Scan has no ini-

Dataset size Cross-over point (Serial Scan over ADS+)

100K 7 queries
1M 4 queries
10M 4 queries
100M 3 queries

1B 3 queries

Table 3 ADS+ outperforms serial scan after a few queries.

tialization cost. ADS+ outperforms iSAX 2.0 by more

than an order of magnitude in terms of data-to-query

time. In Figure 22(b), we plot the query answering time

for all algorithms, and in Figure 22(c), we plot the in-

dexing and query answering times combined, when the

dataset varies between 100K and 1B data series.

ADS+ (SIMS) is the fastest method across the

board. The speed-up is more pronounced when the com-

plete dataset fits in main-memory, where we are able to

prune at a per data series level. This is because data

are transferred from main memory to the CPU in cache-

lines, which are much smaller than the data series size.

Consequently, we have fine control over the data series

that are transferred to the CPU: these are only the data

series that need to be processed. On the contrary, in the

case of large dataset sizes that exceed the main memory

capacity (i.e., 10M and above in our experiments), we

are only able to prune at a per disk-page level. Since

disk pages fit more than one data series, we end up

wasting a considerable amount of time on reading and

transferring from disk data series that are not needed.

We observe that the benefit of ADS+ (SIMS) in

absolute numbers increases with the dataset size. This

is depicted in Figure 22(d), where we plot the amount

of additional time that all methods need in order to

(index the dataset and) answer all the queries in the

workload, when compared to ADS+ (SIMS). For the

10M dataset, Serial Scan, iSAX 2.0, and ADS+ respec-

tively need 2.1x, 2.4x, and 7.4x more time than ADS+

(SIMS), which completes the task within 12.7 minutes.

24 Kostas Zoumpatianos et al.

For the 1B dataset, Serial Scan needs 7 hours more than

ADS+ (SIMS) in order to produce the results; iSAX 2.0

and ADS+ required more than 60 extra hours, at which

point we stopped their execution.

Our experimental evaluation also shows that, even if

Serial Scan has zero initialization cost, ADS+ (SIMS)

very quickly outperforms it, after only a few queries

(refer to Table 3). With a dataset of 100K data se-

ries, Serial Scan becomes slower than ADS+ (SIMS)

if we want to answer 7, or more, queries. Moreover,

the relative benefit of ADS+ (SIMS) increases with the

dataset size: for the datasets with more 100M data se-

ries, ADS+ (SIMS) is faster than Serial Scan after an-

swering merely 3 queries. As a result, ADS+ is the best

option in all cases, even when analysts need to answer

only a few queries.

According to our complexity analysis of Section 5,

being able to answer queries faster than the Serial Scan,

when including the indexing cost as well, means that

we are very far away from the worst case scenario, effi-

ciently pruning large parts of the raw dataset.

7 Conclusions and Future Work

In this work, we show that state-of-the-art data series

indexing approaches cannot cope with the data deluge.

The time needed to build a data series index becomes

prohibitive as the data grows, and may take more than

24 hours to index a collection of 1 billion data series.

We propose the first adaptive indexing approach,

where the index is built incrementally and adaptively,

resulting in a very fast initialization process. Both the

shape of the tree index and the leaf sizes are tuned

adaptively and automatically to fit the workload on-

the-fly. Using both synthetic and diverse real-life data,

we show that our new adaptive indexing approach,

ADS+, copes significantly better with the ever grow-

ing data series collections, and can answer up several

thousands of queries during the time that state-of-the-

art indexing approaches are still in the indexing phase.

Moreover, we show that the proposed approach can be

successfully used even in the case where we need to

build the complete index at once.

Our long term goal is to integrate ADS+ into a gen-

eral data series management system [38] in order to op-

timize similarity search, and support interactive explo-

ration of big data series [65]. While our current imple-

mentation is limited to a single node scenario, ADS can

be naturally parallelized, e.g., by distributing different

sub-trees to different nodes of a cluster system [55,59,

18]. Moreover, in order to ensure uniform utilization of

the complete infrastructure, each node can host more

than one sub-tree, including both hot and cold parts

of the index. We also plan to study the performance

characteristics of ADS+ using a structured approach

for generating query workloads [66].

8 Acknowledgements

We would like to thank Prof. Volker Beckmann for pro-

viding us the Astro dataset [52].

References

1. Adhd-200. http://fcon 1000.projects.nitrc.org/indi/
adhd200/, 2011.

2. QualiMaster A configurable real-time Data Processing
Infrastructure mastering autonomous Quality Adapta-
tion – Deliverable D1.1: Initial Use Cases and Require-
ments. Technical report, QualiMaster Project, 2014.

3. Sloan digital sky survey. https://www.sdss3.org/dr10/
data access/volume.php, 2015.

4. Incorporated Research Institutions for Seismology – Seis-
mic Data Access. http://ds.iris.edu/data/access/, 2016.

5. D. Achakeev and B. Seeger. Efficient bulk updates on
multiversion b-trees. PVLDB, 6(14):1834–1845, 2013.

6. R. Agrawal, C. Faloutsos, and A. N. Swami. Efficient
similarity search in sequence databases. In FODO Con-
ference, 1993.

7. I. Assent, R. Krieger, F. Afschari, and T. Seidl. The TS-
tree: efficient time series search and retrieval. In EDBT,
2008.

8. J. L. Bentley. Multidimensional Binary Search Trees
Used for Associative Searching. Commun. ACM,
18(9):509–517, Sept. 1975.

9. S. Berchtold, D. A. Keim, and H.-P. Kriegel. The X-tree:
An index structure for high-dimensional data. In VLDB,
1996.

10. Y. Bu, T. wing Leung, A. W. chee Fu, E. Keogh, J. Pei,
and S. Meshkin. Wat: Finding top-k discords in time
series database. In SDM, 2007.

11. A. Camerra, T. Palpanas, J. Shieh, and E. Keogh. iSAX
2.0: Indexing and mining one billion time series. In
ICDM, 2010.

12. A. Camerra, J. Shieh, T. Palpanas, T. Rakthanmanon,
and E. Keogh. Beyond One Billion Time Series: Index-
ing and Mining Very Large Time Series Collections with
iSAX2+. KAIS, 39(1):123–151, 2014.

13. K.-P. Chan and A.-C. Fu. Efficient time series matching
by wavelets. In ICDE, 1999.

14. V. Chandola, A. Banerjee, and V. Kumar. Anomaly de-
tection: a survey. ACM Computing Surveys, 41(3):1–58,
2009.

15. L. Chen, M. T. Özsu, and V. Oria. Robust and fast simi-
larity search for moving object trajectories. In SIGMOD,
2005.

16. M. Dallachiesa, B. Nushi, K. Mirylenka, and T. Palpanas.
Uncertain time-series similarity: Return to the basics.
PVLDB, 5(11):1662–1673, 2012.

17. M. Dallachiesa, T. Palpanas, and I. F. Ilyas. Top-k near-
est neighbor search in uncertain data series. PVLDB,
8(1):13–24, 2014.

18. C. du Mouza, W. Litwin, and P. Rigaux. SD-Rtree: A
scalable distributed rtree. In ICDE, 2007.

19. C. Faloutsos, M. Ranganathan, and Y. Manolopoulos.
Fast subsequence matching in time-series databases. In
SIGMOD, 1994.

20. T. M. Ghanem, R. Shah, M. F. Mokbel, W. G. Aref, and
J. S. Vitter. Bulk operations for space-partitioning trees.
In ICDE, 2004.

ADS: The Adaptive Data Series Index 25

21. G. Graefe, F. Halim, S. Idreos, H. A. Kuno, and
S. Manegold. Concurrency control for adaptive index-
ing. PVLDB, 5(7):656–667, 2012.

22. G. Graefe, F. Halim, S. Idreos, H. A. Kuno, S. Mane-
gold, and B. Seeger. Transactional support for adaptive
indexing. VLDB J., 23(2):303–328, 2014.

23. A. Guttman. R-Trees A Dynamic Structure for Spatial
Searching. In SIGMOD, 1984.

24. F. Halim, S. Idreos, P. Karras, and R. H. C. Yap. Stochas-
tic database cracking: Towards robust adaptive indexing
in main-memory column-stores. PVLDB, 5(6):502–513,
2012.

25. P. Huijse, P. A. Estévez, P. Protopapas, J. C. Principe,
and P. Zegers. Computational intelligence challenges
and applications on large-scale astronomical time series
databases. IEEE Comp. Int. Mag., 9(3):27–39, 2014.

26. S. Idreos, I. Alagiannis, R. Johnson, and A. Ailamaki.
Here are my Data Files. Here are my Queries. Where are
my Results? In CIDR, 2011.

27. S. Idreos, M. L. Kersten, and S. Manegold. Updating a
Cracked Database. In SIGMOD, pages 413–424, 2007.

28. S. Idreos, M. L. Kersten, and S. Manegold. Database
Cracking. In CIDR, 2007.

29. S. Idreos, M. L. Kersten, and S. Manegold. Self-
organizing Tuple Reconstruction in Column-stores. In
SIGMOD, 2009.

30. S. Idreos and E. Liarou. dbtouch: Analytics at your fin-
gertips. In CIDR, 2013.

31. S. Idreos, S. Manegold, H. A. Kuno, and G. Graefe.
Merging what’s cracked, cracking what’s merged: Adap-
tive indexing in main-memory column-stores. PVLDB,
4(9):585–597, 2011.

32. H. Jegou, M. Douze, and C. Schmid. Product quantiza-
tion for nearest neighbor search. TPAMI, 33(1):117–128,
2011.

33. K. Kashino, G. Smith, and H. Murase. Time-series active
search for quick retrieval of audio and video. In ICASSP,
1999.

34. S. Kashyap and P. Karras. Scalable kNN search on ver-
tically stored time series. KDD, 2011.

35. E. Keogh, K. Chakrabarti, and M. Pazzani. Dimensional-
ity reduction for fast similarity search in large time series
databases. KAIS, 3(3):263–286, 2000.

36. E. J. Keogh and M. J. Pazzani. An enhanced represen-
tation of time series which allows fast and accurate clas-
sification, clustering and relevance feedback. In KDD,
1998.

37. J. Lin, E. Keogh, and S. Lonardi. A symbolic repre-
sentation of time series, with implications for streaming
algorithms. In DMKD, pages 2–11, 2003.

38. T. Palpanas. Data series management: The road to big
sequence analytics. SIGMOD Rec., 44(2):47–52, 2015.

39. T. Palpanas, M. Vlachos, E. J. Keogh, and D. Gunopulos.
Streaming time series summarization using user-defined
amnesic functions. TKDE, 20(7):992–1006, 2008.

40. T. Palpanas, M. Vlachos, E. J. Keogh, D. Gunopulos, and
W. Truppel. Online amnesic approximation of streaming
time series. In ICDE, pages 339–349, 2004.

41. D. Rafiei and A. Mendelzon. Similarity-based queries for
time series data. In SIGMOD, pages 13–25, 1997.

42. T. Rakthanmanon, B. Campana, A. Mueen, G. Batista,
B. Westover, Q. Zhu, J. Zakaria, and E. Keogh. Searching
and mining trillions of time series subsequences under
dynamic time warping. In KDD, 2012.

43. T. Rakthanmanon, E. J. Keogh, S. Lonardi, and S. Evans.
Time Series Epenthesis: Clustering Time Series Streams
Requires Ignoring Some Data. ICDE, 2011.

44. U. Raza, A. Camerra, A. L. Murphy, T. Palpanas, and
G. P. Picco. Practical data prediction for real-world wire-
less sensor networks. IEEE Trans. Knowl. Data Eng.,
accepted for publication, 2015.

45. S. Richter, J.-A. Quiane-Ruiz, S. Schuh, and J. Dittrich.
Towards zero-overhead static and adaptive indexing in
hadoop. VLDBJ, 2013.

46. P. Rodrigues, J. Gama, and J. Pedroso. Hierarchical
clustering of time-series data streams. Knowledge and
Data Engineering, IEEE Transactions on, 20(5):615–
627, 2008.

47. S. Rogers. Big data is scaling bi and analytics, 1 Sep
2011.

48. F. M. Schuhknecht, A. Jindal, and J. Dittrich. The Un-
cracked Pieces in Database Cracking. PVLDB, 7(2):97–
108, 2013.

49. D. Shasha. Tuning time series queries in finance: Case
studies and recommendations. IEEE Data Eng. Bull.,
22(2):40–46, 1999.

50. J. Shieh and E. Keogh. iSAX: Indexing and Mining Ter-
abyte Sized Time Series. In KDD, 2008.

51. J. Shieh and E. Keogh. iSAX: disk-aware mining and in-
dexing of massive time series datasets. DMKD, 19(1):24–
57, 2009.

52. S. Soldi, V. Beckmann, W. Baumgartner, G. Ponti,
C. R. Shrader, P. Lubiński, H. Krimm, F. Mattana, and
J. Tueller. Long-term variability of agn at hard x-rays.
Astronomy & Astrophysics, 563:A57, 2014.

53. M. Stonebraker. The case for partial indexes. SIGMOD
Rec., 18(4):4–11, 1989.

54. M. Vlachos, D. Gunopulos, and G. Kollios. Discovering
similar multidimensional trajectories. In ICDE, 2002.

55. J. Wang, S. Wu, H. Gao, J. Li, and B. C. Ooi. Indexing
multi-dimensional data in a cloud system. In SIGMOD,
2010.

56. X. Wang, A. Mueen, H. Ding, G. Trajcevski, P. Scheuer-
mann, and E. J. Keogh. Experimental comparison of
representation methods and distance measures for time
series data. DMKD, 26(2):275–309, 2013.

57. Y. Wang, P. Wang, J. Pei, W. Wang, and S. Huang. A
data-adaptive and dynamic segmentation index for whole
matching on time series. PVLDB, 6(10):793–804, 2013.

58. T. Warren Liao. Clustering of time series data - a survey.
Pattern Recognition, 38(11):1857–1874, 2005.

59. Y. Xie, D. Palsetia, G. Trajcevski, A. Agrawal, and A. N.
Choudhary. SILVERBACK: scalable association mining
for temporal data in columnar probabilistic databases. In
ICDE, 2014.

60. L. Ye and E. J. Keogh. Time series shapelets: a new
primitive for data mining. In KDD, 2009.

61. B. Yi and C. Faloutsos. Fast time sequence indexing for
arbitrary lp norms. In VLDB, 2000.

62. J. Zhou and K. A. Ross. Buffering accesses to memory-
resident index structures. In VLDB, 2003.

63. J. Zhou and K. A. Ross. Buffering database operations
for enhanced instruction cache performance. In SIG-
MOD, 2004.

64. K. Zoumpatianos, S. Idreos, and T. Palpanas. Indexing
for interactive exploration of big data series. In SIGMOD,
2014.

65. K. Zoumpatianos, S. Idreos, and T. Palpanas. RINSE:
interactive data series exploration with ADS+. PVLDB,
8(12):1912–1923, 2015.

66. K. Zoumpatianos, Y. Lou, T. Palpanas, and J. Gehrke.
Query workloads for data series indexes. In KDD, 2015.

