
Graph-Query Suggestions for Knowledge Graph Exploration
Matteo Lissandrini

Aalborg University

matteo@cs.aau.dk

Davide Mottin

Aarhus University

davide@cs.au.dk

Themis Palpanas

University of Paris

themis@mi.parisdescartes.fr

Yannis Velegrakis

Utrecht University

i.velegrakis@uu.nl

ABSTRACT
We consider the task of exploratory search through graph queries

on knowledge graphs. We propose to assist the user by expanding

the query with intuitive suggestions to provide a more informative

(full) query that can retrieve more detailed and relevant answers.

To achieve this result, we propose a model that can bridge graph

search paradigms with well-established techniques for information-

retrieval. Our approach does not require any additional knowledge

from the user and builds on principled language modelling ap-

proaches. We empirically show the effectiveness and efficiency of

our approach on a large knowledge graph and how our suggestions

are able to help build more complete and informative queries.

ACM Reference Format:
Matteo Lissandrini, Davide Mottin, Themis Palpanas, and Yannis Velegrakis.

2020. Graph-Query Suggestions for Knowledge Graph Exploration. In Pro-
ceedings of The Web Conference 2020 (WWW ’20), April 20–24, 2020, Taipei,
Taiwan. ACM, New York, NY, USA, 7 pages. https://doi.org/10.1145/3366423.

3380005

1 INTRODUCTION
A knowledge graph models facts as a set of subject-predicate-object

triples forming a graph [8, 38]. These resources gained much inter-

est and hence the task of knowledge graph search via graph queries

is of paramount importance. These graph-queries are structures that

describe the characteristics of the elements of interest [6, 18, 27, 48].

Yet, in query answering, novice users, especially in exploratory use

cases, are often unable to fully specify a structure that would have

retrieved all the information of interest [22, 28, 44].

One useful exploratory query paradigm in knowledge graphs

is exemplar queries [18, 24–27]. As opposed to traditional query

answering, in which the query is a set of specifications for the

elements of interest, an exemplar query is an example from themany

elements of interest. As such, the answers are not the structures

that comply exactly to the query-graph, but elements that have a

similar structure to the one in the user input. For instance, in the

query ⟨A. Kleiner, supervised, A. Einstein⟩, one answer can be ⟨D.
Sciama, supervised, S. Hawking⟩.

Given a graph-query, there are many different ways it can be

expanded. Yet, not all expansions may be of interest to the user, and

a large number of expansions may overload the user. We are the

first to propose an interactive graph-query expansion for graph ex-

emplar queries on knowledge graphs. Interactive query expansion

refers to the problem of retrieving a set of suggestions and the user

selecting one of them [12]. Previous works on interactive graph-

query expansion focus on the task of entity-list completion [36, 47],

while existing systems like SPARKLIS [10], suggest entities that

match particular user specification, disregarding structures with

complementary information [36, 47]. As a consequence, they are

not suitable for generic exploratory needs. In our case, the user

Albert Einstein

Nobel Prize
in Physics

Royal
Society

Alfred	
Kleiner

member

advisor

awards won

PhD

education Heinrich F.
Weber

advisor

2
Albert Einstein

Male

Einstein
Familyfamily

gender

PhDeducation

Einstein
Refrigeratorinvention

1

Query: V: {v1:A. Einstein}, E: { }

Suggestions: < family>, <invention>,
<education>, <gender>

Selection: <education, PhD>

Query: V: {v1:A. Einstein, v2:PhD},
E: { ⟨v1, education, v2⟩ }

Suggestio
ns:

< member >, <advisor>,
<awards_won>

Selection: <advisor, A. Kleiner>

Figure 1: Query steps for “Einstein Academic Education”.

provides a partial graph exemplar query and the system responds

with the k most relevant expansions to complement such query.

Suggesting graph-query expansions requires a way to assess

the likelihood a candidate expansion represents the actual user

need. Graph-query suggestions have not been studied formally so

far, and traditional IR approaches were not designed to work in

such a domain. Traditional IR methods cannot readily adapt to the

structure of knowledge bases that have no document structure.

Recent work has proposed the contextualization of knowledge

graph facts [43] as a supervised learning problem which requires

complex training and manually labelled data and does not offer a

model for query expansion compatible with the classical IR models.

In this work, we present a novel approach to suggest query
expansions for graph-queries. Graph-query expansions are edges
that can be added to the current query. Our model expands IR meth-

ods based on pseudo-relevance feedback and language-models [4,

31] by including structural information described by the query and

answer graphs through neighbour edge-labels. Graph-query ex-

pansions are then ranked and proposed to the user. Our approach

does not pose restrictions on the structure of the knowledge graph

nor requires labeled data (e.g., query logs) as in previous meth-

ods [7, 16, 17, 43]. The simplicity of the model offers much higher

flexibility and efficiency to run in massive graphs like Freebase.

Running example. Consider a student querying for facts about

the education of famous scientists, who knows only A. Einstein as

an example. To obtain information about the scientists’ education

using the exemplar query formalism, it is necessary to specify a

graph query describing the relationships or attributes of interest

by including in the exemplar query A. Kleiner as Einstein’s advisor.

An exemplar query engine [18, 27] will retrieve all the other similar

structures that include those aspects. A person oblivious to these

details would only know Einstein’s name and would not be able to

specify such example. Our goal is to help these users.

In our work, the user starts with the query “A. Einstein”. The

system then suggests additional information, e.g., the facts that he

invented the “Einstein Refrigerator”, or that he had a PhD. The user

https://doi.org/10.1145/3366423.3380005
https://doi.org/10.1145/3366423.3380005

WWW ’20, April 20–24, 2020, Taipei, Taiwan M. Lissandrini et al.

Method External source Data model Structured query Query expansion Interactive Data-driven Example-based

AQE [5] query-logs documents ✘ ✔ ✘ ✔ ✘
Explicit feedback [12, 39] user feedback documents ✘ ✔ ✔ ✘ ✘
Implicit feedback [2, 11] query-logs documents ✘ ✔ ✔ ✔ ✘
External-sources [14, 19] knowledge graphs documents ✘ ✔ ✔ ✘ ✘
Pseudo-relevant [4, 20] none documents ✘ ✔ ✔ ✔ ✘

GRF [37] Wikipedia graphs ✘ ✘ ✘ ✔ ✘
Entity search [19, 47] none graphs ✘ ✘ ✘ ✔ ✔
Contextual Ent. search [1, 41] keywords graphs ✘ ✘ ✘ ✔ ✔
Exemplar queries [25, 27] none graphs ✔ ✘ ✘ ✔ ✔
GQBE [18] none graphs ✔ ✘ ✘ ✔ ✔
Sparklis [10] none graphs ✔ ✘* ✔ ✔ ✘
NFCM [43] Wikipedia graphs ✘ ✔ ✘ ✔ ✔

Graph Query Suggestion none graphs ✔ ✔ ✔ ✔ ✔

Table 1: Outline of related work in terms of fulfilled (✔) and missing (✘) properties of query expansions for exploratory
search. Our method is the only one for graphs that requires no external source or training data to produce query expansions
on structured queries, assisting the user interactively using solely information in the data (data-driven). Additionally, our
suggestions embed the full extent of example-based approaches, which consider the query a representative of the results.

will then select the most suitable suggestion among the options, e.g.,

⟨education, PhD⟩ (Figure 1, left). This latter selection is interpreted

as a new query and the systemwill retrieve a list of scientists accom-

panied by their education. The system can also respond with a new

set of suggestions. For example, given the expansion ⟨education,
PhD⟩, the system proposes more related options (i.e., advisors, and

awards, as in Figure 1, right). The process continues until the user is

satisfied with the answers. Without such a system, the user would

be forced to a laborious search among all available edges, often

hundreds or thousands.

We summarize our contributions as follows:

• We formally define the problem of Suggesting Graph-Query Ex-

pansions (Section 3) and provide a model based on intuitions

from language-modelling and relevance feedback (Section 4).

• We propose two unsupervised methods to estimate the relevance

of expansions based on edge frequency and compare them with

two strong baselines: surprise [33] and Markov models [3].

• We show that our framework outperforms other methods even

when the query contains just one edge, obtaining an NDCG score

between 0.5 and 0.6 on the top-10 suggestions.

• We show with a user-study that our framework provides useful

suggestions quickly by exploiting only edge frequency. Yet, the

framework can integrate more complex structures if needed.

2 RELATEDWORK
Note that oftentimes in exploratory search, the user is not able

to express their information needs in clear terms [44]. Hence we

cannot rely on the user to provide a precise description of the graph

structures they are interested in. To our knowledge, no previous

work tackles the problem of example driven graph-query expansion

in knowledge graphs. Related works for query expansions and

knowledge graph exploration are outlined in Table 1, yet most of

them miss important features to address this problem.

Query Expansion and Suggestion. Query expansion improves

document search by including additional terms in the user’s query

either automatically (implicitly), or interactively. Automatic Query
Expansion (AQE) [5] is a one-shot approach that augments the query

with additional terms and uses the expanded query to retrieve a dif-

ferent set of documents. Such automatic methods do not incorporate

user feedback and potentially deliver irrelevant results [32]. Rather

than changing the query directly, Interactive Query Expansion (IQE)

shows alternative (expanded) queries to the user, generated either

via user explicit feedback on the results [12, 39], or implicitly via

some prior information [2, 11]. Yet, the scarcity of user feedback

can hinder the applicability of such methods.

Other works harness external sources [14, 19] or pseudo-relevant

feedback [4, 20] to help generating expansions.With external sources,
expansion terms are retrieved from thesauri [14] or knowledge

graphs [19]. Knowledge graphs and thesauri are accessed as dic-

tionaries, thus such methods do not deal with the expansion of

graph queries. On another vein, Pseudo-Relevant Feedback (PRF)
techniques [4] build expansions in a data-driven manner by con-

sidering the words contained in the user query’s results. Pseudo-

relevant feedback embodies language models [4] based on word co-

occurrences and provides an effective solution for keyword query

expansion in documents.However, until now there has been no proper
adaptation of such models on graphs. Graph Relevance Feedback

(GRF) [37] proposes the use of a ground-truth query set similar to

pseudo-relevant feedback, but only to re-rank answers for keyword

queries on graphs, without proposing any graph-query expansion.

Exploratory search in knowledge graphs. Exploratory meth-

ods overcome the rigidity of declarative languages in graphs, such as

SPARQL [35]. Entity search allows for automatic completion of a set

of seed entities (persons, organizations, places). Such an expanded

list of entities can complement an ambiguous user query [19] or

provide explanations of the original seed entities [47]. However,

these methods do not interact with the users towards their intended

answers, nor do they provide any query construction mechanism.

Exemplar queries [27] allows users to specify a representative of

the results of an unknown query; the algorithm then discovers

and returns the other results. Similarly, Graph Query by Example

(GQBE) [18] extends the idea to multiple exemplar entity tuples.

Example-based queries, albeit expressive, do not interact with the

user and require the input of a full example (a subgraph or a tuple).

Graph navigation systems. User interfaces for query formula-

tion [9, 10, 15, 17, 34] either (i) assume the user can navigate through

the entire graph structure (often ranking suggestions in decreasing

frequency order [10]), but do not restrict the potentially large num-

ber of expansions [9, 15, 30], or (ii) rely on heuristic approaches

based on query logs [17]. Similarly, faceted search allows smart

filtering of large result sets along different attributes [13]. Faceted

Graph-Query Suggestions for Knowledge Graph Exploration WWW ’20, April 20–24, 2020, Taipei, Taiwan

search proposes no preferred suggestion, leaving the user unas-

sisted. On the other hand, our approach provides concrete and

relevant suggestions on how to expand graph-queries.

Knowledge graph fact contextualization [43] augments a given

knowledge graph fact (edge) with additional facts that help the

user understand its context. A supervised fact contextualization

method (NFCM) trains a neural network on hand-crafted features

and human-annotated data enriched with meta-data extracted from

Wikipedia. This supervised machine-learning process is aimed at

producing short natural language descriptions of a fact. Instead, we

assist the graph-query construction in an unsupervised manner.

3 PROBLEM FORMULATION
A knowledge graph is a set of entities and relationships among them.

Knowledge graphs are represented as directed labelledmulti-graphs,

in which nodes model entities, edges relationships among them, and

labels the names of entities and relationships. Given a finite setL of

entity and relationship labels, a knowledge graph K is described by

a triple ⟨V,E,L⟩, whereV is the set of entities and E⊆V ×V ×L is a

set of relationships (or facts) among entities represented as labeled

edges. In the following, to ease the presentation, we also indicate

with ℓ :V ∪E→L a labelling function on entities and relationships.

A graph G ′
:⟨V ′,E ′,L′⟩ is a subgraph of G :⟨V ,E,L⟩, denoted as

G ′⊑G, if V ′⊆V , E ′⊆E, and L′⊆L. We denote as P⊑(G) the set of
all subgraphs of G. A graph-query is also a graph Q :⟨VQ,EQ,LQ⟩.

We adopt the exemplar queries semantics for the user’s query. In

exemplar queries [6, 18, 27], the user issues queries on a knowledge

graph K by means of a subgraph Q⊑K . Thereby, a graph-query is

interpreted as an example or representative of the intended results.

Example 3.1. Given a user looking for advisors of famous scien-

tists: one example is Alfred Kleiner that can be provided as the exem-

plar query identified by the edge ⟨A. Einstein, advisor, A. Kleiner⟩.

It follows that, when performing the search task, an answer to a

graph-query is a subgraph similar to the one the user provides.

Definition 3.2 (Exemplar Queries [18, 27]). The answers to a query
Q is a set of subgraphs of the knowledge graph that is similar to Q
for some similarity relation ∼, i.e., A={A | A⊑K ∧ A∼Q}.

The above definition depends on the specific choice of the simi-

larity ∼. This problem has been extensively studied in the context of

graph search [17, 27]. Here, we use edge-label preserving subgraph

isomorphism as our default similarity [17, 27]. For instance, for the

user query in Example 3.1, expected answers are other subgraphs

like ⟨Hendrik Lorentz, advisor, Pieter Rijke⟩, and ⟨Niels Bohr, advi-
sor, Christian Christiansen⟩. Hence, we want to suggest expansions
to graph-queries represented by graph-structures as defined above.

Graph-Query Expansions. It is unrealistic to assume that a user

is able to operate on complex graphs and provide a complete sub-

graph representing an example of the intended results. We instead

consider a user that provides an initial query Q , which is treated as

a partial specification of the example. Then, we enable the system

to recommend additional information (in the form of edges) to be

added to such example to better specify the user intent. The sug-

gested edges are called query expansions. In this work, we accept as

a starting queryQ any connected subgraph ofK ; i.e., both arbitrary
structures as well as queries with just a single entity (i.e., a node in

the graph). An expanded graph-query is then a super-graph of the

original query.

Definition 3.3 (Expanded Query). An expanded query
Q ′

:⟨VQ ′,EQ ′,LQ ′⟩ of a query Q :⟨VQ,EQ,LQ⟩ is a connected graph

Q⊑Q ′
, such that |EQ ′|> |EQ |. EQ ′\EQ is the set of query expansions.

Example 3.4. Assume the user query in Example 3.1. Possible

query expansions are edges like ⟨A. Einstein, invention, Einstein
Refrigerator⟩, or ⟨A. Kleiner, employer, University of Zurich⟩.

Suggesting Query Expansions. A graph-query suggestion sys-

tem needs to select only a subset of the possible expansions to be

presented to the user. Indeed, the straightforward approach, which

generates all possible expansions through all the neighbouring re-

lationships around the initial query, overloads the user with too

many options. For instance, the entity Albert Einstein in Freebase

has 500+ outgoing relationships with other entities, not counting

attributes like age or height. As such, we require an intelligent way

to select only those relationships that are more likely to describe the

type of information the user had in mind. We formulate the problem

in a ranking-retrieval fashion by defining a relevance function ρ on

the possible relationships that can be added to the current query Q
to obtain the expansion Q ′

on the knowledge graph K :⟨V,E,L⟩.

We denote the set of candidate expansion edges as Eδ . Hence,
once presented with the set of expansions Eδ , the user either se-
lects one expansion edge e ′∈Eδ to form the expanded query Q ′

, or

interrupts the process if no expansion is required. Note that for in-

teractive exploration, when an expansion is selected, the expanded

query Q ′
can be provided as input for further expansion, hence we

need only to model the single step. Hence, we tackle the following:

Problem 1 (Graph Query Suggestion). Given a knowledge
graphK :⟨V,E,L⟩, a number k>0, and an initial queryQ , retrieve the
top-k edges set Eδ ⊂E, |Eδ |≤k , ranked according to relevance function
ρ. The elements from Eδ are returned as suggested query expansions.

4 GRAPH-QUERY SUGGESTION MODEL
Next, we provide an effective model for the unknown user relevance

function ρ. With such function we obtain a list of k expansion edges

Eδ ⊆E that is shown to the user, among which they can choose

the desired expansion. We devise models to discover the implicit

user preference given the scarce feedback and relying solely on

the data and the query. Our model instantiates ρ as an estimate

of the likelihood of the user selecting a specific expansion edge

given the query they provided. To this effect, we first provide an

appropriate model for the graph-query, and then expand such a

model for computing likelihood of a candidate expansion.

4.1 Bag-of-Labels Model for Graph-Query
One of our core contributions is a simple, yet powerful, modelling

that bridges the gap between knowledge graphs and the well-known
retrieval models applied to documents.We first establish a parallel

between graph-query-suggestion and query expansion for keyword

queries [12] with reference to language models [31]. The language

model in keyword queries relates the relevance of a document D
to the intent expressed by a keyword query q. The intent behind a

query is defined by a distribution over the words from which the

user samples the content of the query [31]. In language models,

WWW ’20, April 20–24, 2020, Taipei, Taiwan M. Lissandrini et al.

each document D in a collection C is described by a multinomial

distribution p̂(w |D) over each keywordw [31]. Under such model,

the likelihood p̂(D |q) for a query q=⟨w1,w2...wn⟩ is proportional to

p̂(q|D)p̂(D), where p̂(D) is a prior onD. Intuitively, the user’s query
describes a summary of a document through a sample of words

drawn from a distribution over the document collection. Therefore,

identifying which new keywordw ′
could be added to q turns into

estimating the probability p̂(w ′|q). Hence, we estimate the proba-

bilistic modelMq (a multinomial distribution over keywords) that

generated q as well as the one generating D, i.e.,MD.

To bridge the gap between traditional search models and graph-

search, we propose an adapted representation for a graph. In par-

ticular, we note that a graph query describes a set of relationships,

which are characterized by the respective edge labels. As such, a

graph can be modelled as follows:

Definition 4.1 (Bag of Labels Model of a Graph). Given a graph

G :⟨VG,EG,LG⟩,G⊑K , its adapted representation as a multiset (or

bag) is Bag(G):
{
lm(l)|⟨v1,v2,l⟩∈EK∧(v1∈VG∨v2∈VG)

}
.

m(l) represents the cardinality of label l in the Bag(G) (duplicate
edges are preserved) as |

{
⟨v1,v2,l⟩∈EK∧(v1∈VG∨v2∈VG)

}
|.

Under this definition, two graphs are similar if they contain sim-

ilar bags of edge labels. Note that an edge label can appear multiple

times around nodes in a graph, so the frequency of edge labels is as

important as the frequency of keywords in the corresponding bag-

of-words model. Furthermore, we do not include only edges that

appear in the current graph, but also edges on the fringe that connects
the graph-nodes with the surrounding portion of the knowledge graph.
This choice has two positive effects: (1) it enriches the description

of Bag(Q) and Bag(G), and (2) allows the model to be applicable

even when Q contains just a single node. Our experiments show

that this modelling choice effectively captures enough information

and still enables fast computations, despite its simplicity. Given

our bag of labels model, we estimateMG for any graph G∈P⊑(K)

using label frequencies in Bag(G). That is, MG is a multinomial

distribution over edge-labels, which is estimated according to the

frequency of edge labels in the corresponding Bag(G).

4.2 Baseline Scoring-Functions
We present two baseline techniques for computing ρ(Q,e) as the
likelihood of choosing the edge e with label ℓ(e)=l , given a graph

queryQ with some modeled edge-label distributionM , i.e., p̂(l |MQ).

The first method is based onmaximum likelihood estimation, where

the score of a label l is proportional to its relative frequency around
the graph-query and in the entire repository, i.e., frequent labels are

considered more likely to be part of a query. The model is estimated

with Dirichlet smoothing (according to previous work [46]) as:

p̂(l |MQ)MLE=
|ElQ |+εp̂(l |K)

|EQ |+ε
, (1)

where ϵ is the Dirichlet prior (a system-wide constant usually be-

tween 1000 and 2000 [46]), |ElQ | is the number of edges in Q with

label l , |EQ | is the total number of edges inQ , and p̂(l |K) represents

the probability of l in the collection of target graphs, but in our

case is approximated by |El |/|E | (El are edges with label l in K).

The second technique favours distinctive labels, i.e., labels that

are frequent around the query, but infrequent in the dataset. This

score is computed with the KL-divergence [20], as follows:

p̂(l |MQ)KL∝exp

(
1

(1−λ)
log(p̂(l |MQ))−

λ

(1−λ)
log(p̂(l |K))

)
(2)

The parameter λ∈[0,1) is a weighting parameter that for document

search depends on the frequency of keywords in the collection,

while in our case, depends on the frequency of labels in the graph.

4.3 Scoring with Pseudo-Relevance Feedback
Next, we describe a model-based approach inspired by the pseudo-

relevance feedback framework [4, 21, 45]. Under this model, we

estimate the likelihood of a candidate expansion-edge based on its

relative frequency within a pseudo-relevance set of graphs retrieved
by the original query. Based on that, a new model is estimated

(Mr el) to evaluate the likelihood of a candidate query expansion.

As such, we process the current graph-query and obtain the

pseudo-relevance setGr el={G1, ...,Gk} of answer graphs thatmatch

the original user query. We retrieve those answers by applying en-

tity similarity [36] for single entities, or exemplar queries [18, 27]

for generic graph-queries. The relevance score for the candidate

expansion label l can be obtained through maximum likelihood

estimation from the set Gr el of (pseudo-)relevant graphs and the

corresponding set of bags of labels Bag(Gr el)

p̂(l |Mr el)MLE≈
∑

G ∈Gr el

p̂(l |MG)p̂(Q |MG), (3)

where p̂(Q |MG)∝
∏

l ∈Bag(Q)p̂(l |MG), and each p̂(l |MG) is computed

according to Equation 1.

For instance, assume the query to be the edge ⟨ A.Einstein, ed-
ucation, PhD⟩ as in Figure 1 (middle). We will first retrieve as a

pseudo-relevance set all other edges (or a top-k subset) with the

same label (those are, by construction isomorphic graphs). Then we

rank the edges around the original query that were not contained

in the query, e.g., awards won or advisor, and we will do so by

exploiting the frequency of such labels in the pseudo-relevance set.

In particular, if we rank them based on their score in Equation 3

we will favour expansions that appear frequently in the pseudo-

relevant set.

As we observed earlier (Equation 2), one could use alternatively

the intuition behind the KL-divergence scoring model [45]. In prac-

tice, the scoring assigns a high probability to expansions that are

common in Gr el , but not so common within the rest of the graph.

Within such a model, a candidate expansion label l has a score

proportional to the following:

p̂(l |Mr el)KL∝exp
©« 1

(1−λ)

Gr el∑
G

log(p̂(l |MG))

|Gr el |
−

λ
(1−λ)

log(p̂(l |K))
ª®¬ (4)

Surprise-basedHeuristicWe complete our study including a scor-

ing technique for expansions based on the concept of surprise [33].
This heuristic is still implemented within the pseudo-relevance

feedback framework.

This method adopts the same intuition seen earlier for the case of

the KL-divergence scoring model, i.e., the expansion terms that ob-

tain a higher score are those with a relative frequency higher in the

result-set than in the rest of the dataset. Therefore, for documents,

given a set of terms T={t1,t2, ...,tn}, p̂(ti) is the probability of term

ti to appear in one document, and p̂(t1,t2, ...,tn) is the probability of

Graph-Query Suggestions for Knowledge Graph Exploration WWW ’20, April 20–24, 2020, Taipei, Taiwan

all terms to occur together in one document. The surprise is then

measured by the ratio p̂(t1,t2, ...,tn)/p̂(t1)·p̂(t2)... ·p̂(tn)
Therefore, given the query Q={t1,t2, ...,tn}, we can score an

expansion term t ′ by considering the increment in the surprise score

obtained by Surprise(T)−Surprise(T∪{t ′}). Note that, opposed to

the earlier models, this score counts the number of documents in

which a term appears, but is not affected if in some documents the

term is more or less frequent. The final score is:

Surprise(l)∝p̂(l |Mr el)/p̂(l |K). (5)

5 EXPERIMENTAL EVALUATION
Here we show that suggesting labels based only on their absolute

frequency in the graph does not provide any useful information.

The same is true when we favour expansions based only on node

popularity or proximity: they result more frequently in unhelpful

suggestions. In contrast, our method based on KL-divergence with
PRF inclusion provides relevant suggestions even when the query
contains one edge. Therefore, the KL-divergence with PRF is the

most appropriate score for graph-query suggestion and it is able to

effectively support users unfamiliar with the graph schema.

5.1 Experimental settings
Dataset: We validate our approach on Freebase, one of the largest

available knowledge graphs. We use two snapshots. First the full

dataset (after removing unnecessary metadata, e.g., Freebase users)

with 76M nodes, 314M edges, and ∼4.5K distinct edge labels. The

other is a smaller snapshot (used in KG contextualization [43]),

which focuses on People, Films, Music, Awards, Government, Busi-

ness, Organizations, and Education (∼500 edge labels).

Implementation:We implement our fourmethods [23]:MLE: The
maximum likelihood estimation (Eq. 1); KL: The KL-divergence
method (Eq. 2);MLE-rel: The maximum likelihood estimation with

PRF (Eq. 3); KL-rel: The KL-divergence method with PRF (Eq. 4).

Additionally, we implement three baseline methods: PPR: entity rec-

ommendation based on random walks [40]; Srp: Surprise heuristic
described in Equation 5; Rnd: uniformly random suggestion. With

Personalized Page Rank [3], in our case, edge suggestions are those

directed towards nodes with the highest PPR score.

Queries: We tested two different sets of queries. For the first set

(QALD-7), we obtained graph queries by translating questions and

answers from the QALD-7 dataset [42]. We manually selected 65

queries covering diverse topics and with a clear exploratory intent,

having potentially multiple answers and an explicit mapping into

Freebase nodes and edges
1
. The choice of Freebase is motivated by

previous studies [18, 27, 43] and allow us to evaluate our methods

on one of the largest available knowledge graphs. For instance, the

first query in the QALD-7 dataset is “doctoral supervisor, Albert

Einstein”, this can be translated into the single exemplar entity A.
Einstein, or in the exemplar edge ⟨A. Einstein, advisor, A. Kleiner⟩
(see Figure 1). We then assigned to each graph-query a descriptive,

yet unbiased, sentence to describe the exploratory information need.

For instance, in the previous example, the assigned exploratory need

was “Academic information about Albert Einstein”.
The second set (KG contextualization) is a larger set of 325 facts

designed to test fact contextualization methods [43]. While this set

1
http://people.cs.aau.dk/~matteo/files/exp-queries.zip

has more queries, it is designed for a different task, where the query

is limited to a single edge and answers are expected to help the

user understand the context of such fact. Moreover, all the queries

in this set are people-centric (i.e., facts that involve a person).

Running time: We remark that the goal of this work is to study

ranking models for graph query suggestion. There are only two

time-consuming tasks in our algorithm: retrieving neighbour edges,

to compute candidate expansions, and exemplar-query answering

for PRF ranking. Both enjoy very efficient implementations [18, 27]

that run in less than 1 sec. on average, while the time required to

compute the score given the computed results is of few milliseconds.

5.2 User assessment
For the QALD-7 query set, we computed the top-20 edge expansion

suggestions for each query and each method, i.e., for each graph

query we obtained a list of 20 distinct edges that could be added to it.

We obtained 7 expansion lists each one containing 20 edges one for

each suggestion method. Each expansion has been translated into

natural language
1
in order to allow the raters to judge its relevance

to the task. Through crowd-sourcing, for each query and candidate

expansion, we collected human judgments assessing their relevance

on a four-point scale: irrelevant (0), uninteresting (1), fairly inter-

esting (2), really interesting (3). In total, we obtained more than 25

thousands judgments, with at least three judgments for each query-

suggestion pair. In particular, the average stddev among ratings

for each question-answer pair is 0.413, median stddev of 0.471, and

90th percentile of 0.942. The query set for KG contextualization

provides judgments with a similar format also obtained through

crowdsourcing. In their case, facts are scored based not only on the

edge-types but also on the target entity involved. We aggregated

their relevance scores to obtain relevant edge-labels coherent with

our application.

When analyzing the proportion of ratings we obtained from the

human assessors, we found on average only five really interesting,

or fairly interesting suggestions per query, among all methods.

This demonstrates that usually the user intent can be described by
a very small number of edges. This finding is consistent with the

other query set, where less than 10% of the answers are judged

relevant [43]. That is, finding the right edge to expand the user

query, resembles the proverbial needle in the haystack. For both

query datasets we can report a moderate agreement among raters.

5.3 Ranking quality
We compare first the ranked suggestions for theQUALD-7 dataset

in terms of Normalized Discounted Cumulative Gain (NDCG) from

top-1 to top-20, for the case of queries composed by one single

entity (Figure 2), one edge (Figure 3), and two or more edges (Fig-

ure 4). We report the average NDCG score for each query and each

method using the averages of the human judgments.

When the query is a single entity (Figure 2), no approach per-

forms better than guessing. Except for PPR, all other methods per-

form similarly and the difference among methods does not signifi-

cantly deviate (with p-value <0.05) from random (Rnd). The low

performance of PPR is statistically significant (p-value <0.05) com-

pared to the other methods. As expected, knowing just the entity

of interest is too little information to predict the user interest. In

such cases, an effective strategy could maximize suggestion-list

http://people.cs.aau.dk/~matteo/files/exp-queries.zip

WWW ’20, April 20–24, 2020, Taipei, Taiwan M. Lissandrini et al.

@1 @3 @6 @9 @12 @15 @18 @20
Rank

0.1

0.2

0.3

0.4

0.5

0.6

Av
er

ag
e

ND
CG

@

KL-rel
Srp
Rnd
MLE-rel
Ppr
KL
MLE

Figure 2: NDCG score at top-1 to top-
20 when the starting query contains 1
Entity

@1 @3 @6 @9 @12 @15 @18 @20
Rank

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Av
er

ag
e

ND
CG

@

KL-rel
Srp
Rnd
MLE-rel
Ppr
KL
MLE

Figure 3: NDCG score at top-1 to top-
20 when the starting query contains 1
Edge (2 Entities)

@1 @3 @6 @9 @12 @15 @18 @20
Rank

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

Av
er

ag
e

ND
CG

@

KL-rel
Srp
Rnd
MLE-rel
Ppr
KL
MLE

Figure 4: NDCG score at top-1 to top-
20 when the starting query contains 2
or more Edges (3+ Entities)

diversity, in order to cover many different aspects and help the user

disambiguate their intention.

The outcome is different for queries composed by one edge (Figure 3).
We see that the KL-rel function outperforms the other methods

with an average NDCG score around 5.5 (with p-value <0.05, w.r.t

Rnd, PPR, KL, and MLE). The Surprise (Srp) heuristic provides good

results as more suggestions are included in the top-k, and the dif-

ference with KL-rel is not statistically significant after the top-12.

PRF paired with a strategy that favours unexpectedly frequent rela-
tionships, pays-off in terms of quality, pushing relevant suggestions
first. On the other hand, we notice that favouring really frequent

edge labels is detrimental to the quality of the suggestions. This is

confirmed by the queries with 2 or more edges (Figure 4), where

the KL-rel outperforms the competitors (p-value <0.05).

The results in Table 2 on the KG contextualization query set [43]

confirm the above findings. The NDCG scores indicate (with p-value

<0.05) that the KL-rel scoring function provides consistently better

suggestions than the other methods. We note that our technique

presents structure-query suggestions, where relevance is scored

against relationship types, whereas the focus of the KG contextu-

alization task is on specific fact instances. Moreover, NFCM [43]

is a supervised method, while our approach is fully unsupervised.

For this reason we abstain from a direct comparison of the two

methods. Instead, in a different experiment, we investigate whether

our scores – combined – can form simple and effective features on

a supervised learning-to-rank method for the NFCM task. In this

experiment, we use all the scores (Srp, MLE, KL, MLE-rel, KL-rel,

and PPR) as features. Each query-expansion pair is encoded as a

query-document pair to train a state-of-the-art learning-to-rank

model [29] using the labels in NFCM [43]. We report that in this

different settings our approach obtains comparable results to NFCM

(e.g., NDCG@5 of 0.4513 vs. 0.5110 declared; NDCG@10 of 0.4954 vs.

0.5289 declared) and generally superior to all the baselines against

which NFCM was tested [43]. This result indicates the applicability

of our measures on related tasks, such as contextualization.

NDCG @3 @5 @10 @12 @15 @18 @20
EM-rel 0.2961 0.2625 0.4185 0.4185 0.4185 0.4185 0.4457

Srp 0.2346 0.2617 0.3470 0.3470 0.3764 0.4333 0.4333

KL-rel 0.3743 0.4928 0.5819 0.5819 0.6112 0.6394 0.6394
Table 2: Avg. NDCG for the KG Contextualization data [43].

Comparison with different query-sizes: We study the effect of

increasing the query size on the ability to predict relevant expan-

sions (we mark as relevant suggestions with an average score larger

than 2 on the scale [0–3]). We studied the mean average precision

(MAP) at top-1,3,5,10 for all the methods, comparing different query

sizes (not reported for space constraints). We recorded both better

precision provided by the KL-methods (when presented with at

least one edge in the query), but also the fact that, as the user pro-

vides additional information, the score is able to better capture the

user intention and provide more relevant information. Note that as

the size of the query increases, the number of possible expansions

also increase: this makes the task harder, yet precision is not hurt,

proving that the additional information is effectively exploited.

5.4 Measuring user effort
We estimate the user effort spared on obtaining the desired graph

query. We assume each query’s target graph is obtained by select-

ing the edges with the highest user rating. The initial query is the

fact mentioned by keyword queries in the QALD-7 dataset (e.g.,

for “Academic information on A. Einstein” we consider ⟨A. Einstein,
advisor, A. Kleiner⟩). The overall effort compares the number of

suggestions required to retrieve all the edges from the initial query

to the total number of possible edge types that a user would be re-

quired to inspect without our system (i.e., the number of edge-types

for each entity). For instance, for the query above, the final query

graph would contain facts about the advisor, the PhD degree, and

the university of affiliation. Considering that the entity A. Einstein
has 41 edge-types around it and presenting to the user just one

instance of each type, the user would be required to inspect all of

them to identify the desired edges. With our best scoring (KL-rel),

the first relevant fact (⟨A. Einstein, education, PhD⟩) was within
the top-5 suggestions, while the information about the department

and the university were among the top-6 in the subsequent set of

suggestions. This allows the user to limit the inspection to just 11

edge types, instead of a total of 50. We repeated the process for all

queries. We estimate that, with our system, the user can inspect 60%

fewer edge-types, significantly reducing their effort in formulating

their queries. Therefore, our system makes the difference between a

task that users will most probably never complete (with traditional

tools), and a task they can easily carry out (using our suggestions).

6 CONCLUSIONS
We consider the novel task of graph query expansion in the context

of exemplar search. We introduce query expansion methods for

knowledge graphs to help users navigate queries and answers at the

same time. Our experimental evaluation on real users demonstrates

the expressiveness and the effectiveness of our methods in assisting

the users in exploratory search. Our score based on KL-divergence

outperforms strong baselines based on frequent edge labels and

Personalized PageRank, providing useful graph-query suggestions.

Graph-Query Suggestions for Knowledge Graph Exploration WWW ’20, April 20–24, 2020, Taipei, Taiwan

REFERENCES
[1] Sumit Bhatia and Harit Vishwakarma. 2018. Know Thy Neighbors, and More!:

Studying the Role of Context in Entity Recommendation (HT ’18). 87–95.
[2] P. Boldi, F. Bonchi, C. Castillo, and S. Vigna. 2011. Query reformulation mining:

models, patterns, and applications. IR 14, 3 (2011), 257–289.

[3] Ilaria Bordino, Yelena Mejova, and Mounia Lalmas. 2013. Penguins in Sweaters,

or Serendipitous Entity Search on User-generated Content (CIKM ’13). 109–118.
[4] Guihong Cao, Jian-Yun Nie, Jianfeng Gao, and Stephen Robertson. 2008. Selecting

Good Expansion Terms for Pseudo-relevance Feedback. In SIGIR. 243–250. https:

//doi.org/10.1145/1390334.1390377

[5] Claudio Carpineto and Giovanni Romano. 2012. A Survey of Automatic Query

Expansion in Information Retrieval. ACM Comput. Surv. 44, 1, Article 1 (Jan.

2012), 50 pages.

[6] Jiefeng Cheng, Xianggang Zeng, and Jeffrey Xu Yu. 2013. Top-k graph pattern

matching over large graphs. In ICDE. IEEE, 1033–1044.
[7] Jeffrey Dalton, Laura Dietz, and James Allan. 2014. Entity Query Feature

Expansion Using Knowledge Base Links (SIGIR ’14). ACM, 365–374. https:

//doi.org/10.1145/2600428.2609628

[8] Xin Dong, Evgeniy Gabrilovich, Geremy Heitz, Wilko Horn, Ni Lao, Kevin Mur-

phy, Thomas Strohmann, Shaohua Sun, and Wei Zhang. 2014. Knowledge Vault:

A Web-scale Approach to Probabilistic Knowledge Fusion (KDD ’14). 601–610.
https://doi.org/10.1145/2623330.2623623

[9] Ahmed El-Roby, Khaled Ammar, Ashraf Aboulnaga, and Jimmy Lin. 2016. Sap-

phire: Querying RDF data made simple. PVLDB 9, 13 (2016), 1481–1484.

[10] Sébastien Ferré. 2017. Sparklis: an expressive query builder for SPARQL endpoints

with guidance in natural language. Semantic Web 8, 3 (2017), 405–418.
[11] JianfengGao, GuXu, and Jinxi Xu. 2013. Query ExpansionUsing Path-constrained

Random Walks. In SIGIR. 563–572.
[12] D. Harman. 1988. Towards Interactive Query Expansion. In SIGIR. 321–331.
[13] Philipp Heim, Jürgen Ziegler, and Steffen Lohmann. 2008. gFacet: A Browser for

the Web of Data. In Proceedings of the International Workshop on Interacting with
Multimedia Content in the Social Semantic Web (IMC-SSW’08), Vol. 417. Citeseer,
49–58.

[14] Guangjun Huang, Shuili Wang, and Xiaoguo Zhang. 2011. Query Expansion

based on Associated Semantic Space. Journal of Computers 6, 2 (2011).
[15] Kai Huang, Sourav S Bhowmick, Shuigeng Zhou, and Byron Choi. 2017. PICASSO:

exploratory search of connected subgraph substructures in graph databases.

PVLDB 10, 12 (2017), 1861–1864.

[16] Zhipeng Huang, Bogdan Cautis, Reynold Cheng, and Yudian Zheng. 2016. Kb-

enabled query recommendation for long-tail queries (CIKM ’16). ACM, 2107–

2112.

[17] Nandish Jayaram, Sidharth Goyal, and Chengkai Li. 2015. VIIQ: auto-suggestion

enabled visual interface for interactive graph query formulation (VLDB), Vol. 8.
1940–1943.

[18] Nandish Jayaram, Arijit Khan, Chengkai Li, Xifeng Yan, and Ramez Elmasri.

2015. Querying knowledge graphs by example entity tuples. TKDE 27, 10 (2015),

2797–2811.

[19] Vitaly Klyuev and Yannis Haralambous. 2011. Query expansion: Term selection

using the ewc semantic relatedness measure. In FedCSIS. 195–199.
[20] John Lafferty and Chengxiang Zhai. 2017. Document Language Models, Query

Models, and Risk Minimization for Information Retrieval. SIGIR Forum 51, 2 (Aug.

2017), 251–259.

[21] Victor Lavrenko and W. Bruce Croft. 2001. Relevance Based Language Models.

In SIGIR. 120–127.
[22] Matteo Lissandrini, Davide Mottin, Themis Palpanas, and Yannis Velegrakis.

2018. Data Exploration Using Example-Based Methods. Synthesis Lectures on Data

Management, Vol. 10. Morgan & Claypool Publishers. 1–164 pages.

[23] Matteo Lissandrini, Davide Mottin, Themis Palpanas, and Yannis Velegrakis. 2018.

X2Q: Your Personal Example-based Graph Explorer (VLDB ’18). 901–904.
[24] Matteo Lissandrini, Davide Mottin, Dimitra Papadimitriou, Themis Palpanas, and

Yannis Velegrakis. 2014. Unleashing the Power of Information Graphs. SIGMOD
Rec. (2014), 21–26.

[25] Matteo Lissandrini, Davide Mottin, Yannis Velegrakis, and Themis Palpanas. 2018.

Multi-Example Search in Rich Information Graphs. In ICDE.
[26] Steffen Metzger, Ralf Schenkel, and Marcin Sydow. 2013. QBEES: query by entity

examples. In CIKM. 1829–1832. https://doi.org/10.1145/2505515.2507873

[27] Davide Mottin, Matteo Lissandrini, Yannis Velegrakis, and Themis Palpanas.

2016. Exemplar queries: a new way of searching. VLDB J. (2016), 1–25. https:

//doi.org/10.1007/s00778-016-0429-2

[28] Davide Mottin, Matteo Lissandrini, Yannis Velegrakis, and Themis Palpanas. 2019.

Exploring the Data Wilderness Through Examples. In Proceedings of the 2019
International Conference on Management of Data (SIGMOD ’19). ACM, New York,

NY, USA, 2031–2035. https://doi.org/10.1145/3299869.3314031

[29] Rama Kumar Pasumarthi, Sebastian Bruch, Xuanhui Wang, Cheng Li, Michael

Bendersky, Marc Najork, Jan Pfeifer, Nadav Golbandi, Rohan Anil, and Stephan

Wolf. 2019. TF-Ranking: Scalable TensorFlow Library for Learning-to-Rank.

In Proceedings of the 25th ACM SIGKDD International Conference on Knowledge

Discovery and Data Mining.
[30] Robert Pienta, Fred Hohman, Alex Endert, Acar Tamersoy, Kevin Roundy, Chris

Gates, Shamkant Navathe, and Duen Horng Chau. 2018. VIGOR: interactive

visual exploration of graph query results. IEEE transactions on visualization and
computer graphics 24, 1 (2018), 215–225.

[31] Jay M. Ponte and W. Bruce Croft. 1998. A Language Modeling Approach to

Information Retrieval. In SIGIR. ACM, 275–281.

[32] Ian Ruthven. 2003. Re-examining the Potential Effectiveness of Interactive Query

Expansion. In SIGIR. ACM, 213–220.

[33] Nikos Sarkas, Nilesh Bansal, GautamDas, and Nick Koudas. 2009. Measure-driven

keyword-query expansion. PVLDB 2, 1 (2009), 121–132.

[34] Bahareh Sarrafzadeh and Edward Lank. 2017. Improving Exploratory Search

Experience Through Hierarchical Knowledge Graphs (SIGIR ’17). 145–154.
[35] Bahareh Sarrafzadeh, Olga Vechtomova, and Vlado Jokic. 2014. Exploring

Knowledge Graphs for Exploratory Search. In Proceedings of the 5th Infor-
mation Interaction in Context Symposium (IIiX ’14). ACM, 135–144. https:

//doi.org/10.1145/2637002.2637019

[36] Grzegorz Sobczak, Mateusz Chochół, Ralf Schenkel, and Marcin Sydow. 2015.

iQbees: Towards Interactive Semantic Entity Search Based on Maximal Aspects.

In Foundations of Intelligent Systems. Springer, 259–264.
[37] Yu Su, Shengqi Yang, Huan Sun, Mudhakar Srivatsa, Sue Kase, Michelle Vanni,

and Xifeng Yan. [n. d.]. Exploiting Relevance Feedback in Knowledge Graph

Search (KDD ’15). 1135–1144.
[38] Fabian M. Suchanek, Gjergji Kasneci, and Gerhard Weikum. 2007. Yago: A Core

of Semantic Knowledge (WWW ’07). 697–706.
[39] Bin Tan, Atulya Velivelli, Hui Fang, and ChengXiang Zhai. 2007. Term Feedback

for Information Retrieval with Language Models. In SIGIR. ACM, 263–270.

[40] Hanghang Tong, Christos Faloutsos, and Jia-Yu Pan. 2006. Fast RandomWalkwith

Restart and Its Applications. In ICDM. https://doi.org/10.1109/ICDM.2006.70

[41] Nam Khanh Tran, Tuan Tran, and Claudia Niederée. 2017. In The Semantic Web.
353–368.

[42] Ricardo Usbeck, Axel-Cyrille Ngonga Ngomo, Bastian Haarmann, Anastasia

Krithara, Michael Röder, and Giulio Napolitano. 2017. 7th Open Challenge on
Question Answering over Linked Data (QALD-7). 59–69.

[43] Nikos Voskarides, Edgar Meij, Ridho Reinanda, Abhinav Khaitan, Miles Osborne,

Giorgio Stefanoni, Prabhanjan Kambadur, and Maarten de Rijke. 2018. Weakly-

supervised Contextualization of Knowledge Graph Facts. In SIGIR. 765–774.
https://doi.org/10.1145/3209978.3210031

[44] Ryen W. White and Resa A. Roth. 2009. Exploratory Search: Beyond the Query-
Response Paradigm. Morgan and Claypool Publishers. http://dx.doi.org/10.2200/

S00174ED1V01Y200901ICR003

[45] Chengxiang Zhai and John Lafferty. [n. d.]. Model-based Feedback in the Lan-

guage Modeling Approach to Information Retrieval (CIKM ’01). 403–410.
[46] Chengxiang Zhai and John Lafferty. [n. d.]. A Study of Smoothing Methods for

Language Models Applied to Ad Hoc Information Retrieval (SIGIR ’01). 334–342.
[47] Xiangling Zhang, Yueguo Chen, Jun Chen, Xiaoyong Du, Ke Wang, and Ji-Rong

Wen. 2017. Entity Set Expansion via Knowledge Graphs (SIGIR ’17). 1101–1104.
[48] P. Zhao and J. Han. 2010. On graph query optimization in large networks. VLDB

J. 3, 1-2 (2010), 340–351.

https://doi.org/10.1145/1390334.1390377
https://doi.org/10.1145/1390334.1390377
https://doi.org/10.1145/2600428.2609628
https://doi.org/10.1145/2600428.2609628
https://doi.org/10.1145/2623330.2623623
https://doi.org/10.1145/2505515.2507873
https://doi.org/10.1007/s00778-016-0429-2
https://doi.org/10.1007/s00778-016-0429-2
https://doi.org/10.1145/3299869.3314031
https://doi.org/10.1145/2637002.2637019
https://doi.org/10.1145/2637002.2637019
https://doi.org/10.1109/ICDM.2006.70
https://doi.org/10.1145/3209978.3210031
http://dx.doi.org/10.2200/S00174ED1V01Y200901ICR003
http://dx.doi.org/10.2200/S00174ED1V01Y200901ICR003

	Abstract
	1 Introduction
	2 Related Work
	3 Problem Formulation
	4 Graph-Query Suggestion Model
	4.1 Bag-of-Labels Model for Graph-Query
	4.2 Baseline Scoring-Functions
	4.3 Scoring with Pseudo-Relevance Feedback

	5 Experimental Evaluation
	5.1 Experimental settings
	5.2 User assessment
	5.3 Ranking quality
	5.4 Measuring user effort

	6 Conclusions
	References

