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ABSTRACT
Similarity search is a core operation of many critical applications,
involving massive collections of high-dimensional (high-d) objects.
Objects can be data series, text, multimedia, graphs, database ta-
bles or deep network embeddings. In this tutorial, we revisit the
similarity search problem in light of the recent advances in the
field and the new big data landscape. We discuss key data science
applications that require efficient high-d similarity search, we sur-
vey recent approaches and share surprising insights about their
strengths and weaknesses, and we discuss open research problems,
including the directions of AI-driven, progressive, and distributed
high-d similarity search.
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1 INTRODUCTION
Similarity search aims at finding objects in a collection that are
close to a given query according to some definition of sameness. It
is a fundamental operation that lies at the core of many critical data
science applications. In data integration, it has been used to auto-
mate entity resolution [20] and support data discovery [76]. It has
powered electricity demand analytics [43], recommender systems
of online billion-dollar enterprises [66] and enabled clustering [12],
classification [57] and outlier detection [10, 13, 46] in domains as
varied as bioinformatics, computer vision, security, finance and
medicine. Similarity search has also been exploited in software
engineering [3] to automate API mappings and predict program
dependencies, and in cybersecurity to profile network usage and
detect malware [19].

This problem has been studied heavily in the past 25 years and
will continue to attract attention as massive collections of high-
dimensional (high-d) objects are becoming omnipresent [23, 51, 53].
Objects can be data series, text, images, audio and video recordings,
graphs, database tables or deep network embeddings. Similarity
search over high-d objects is often reduced to a 𝑘-Nearest Neighbor
(k-NN) problem such that the objects are represented using high-d
vectors and the (dis)-similarity between them is measured using
a distance. Some studies [1, 9] have argued that NN search is not
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meaningful for a number of high-d datasets due to the concentra-
tion of distances (a.k.a. the curse of dimensionality). However, these
conclusions were based on over-restrictive assumptions such as
data being identical and independently distributed (i.i.d.) in each
dimension, dimensionality being the only factor determining mean-
ingfulness and an asymptotic analysis of dimensionality growing to
infinity. In fact, other studies have shown that high-d NN search is
meaningful for non-i.i.d data, data with low intrinsic dimensionality
and for a variety of real world datasets [35]. The importance and
relevance of NN search in high-d is further evidenced by a large
and growing body of research [21].

High-d similarity search is hard, because objects often contain
100s-1000s of dimensions. For large datasets, the cost to compare
a query to all objects in the collection becomes prohibitive both
in terms of CPU and I/O. Similarity search algorithms can either
return exact or approximate answers. Exact methods are expen-
sive while approximate methods sacrifice accuracy to achieve bet-
ter efficiency. We call methods that provide no guarantees on the
results 𝑛𝑔-approximate, and those supporting guarantees on the
approximation error, 𝛿-𝜖-approximate methods, where 𝜖 is the ap-
proximation error and 𝛿 , the probability that 𝜖 will not be exceeded.
When 𝛿 = 1, a 𝛿-𝜖-approximate method becomes 𝜖-approximate,
and when 𝜖 = 0, an 𝜖-approximate method becomes exact.

This tutorial covers data science applications requiring efficient
high-d similarity search, provides an overview of the state-of-the-
art exact and approximate high-d similarity search approaches, and
discusses the open research problems in this domain, including
the directions of progressive and distributed solutions, as well as
solutions that integrate Artificial Intelligence (AI).

2 TRENDS AND CHALLENGES
Similarity search has been studied in the past 25 years by differ-
ent communities often using diverse and conflicting terminology.
We present a unified terminology and a taxonomy (Fig 1; non-
exhaustive) for similarity search techniques [26, 27], in order to
facilitate further work in this area.

[Exact Search] Exact techniques guarantee correct results at the
expense of efficiency and footprint. The research community has
developed exact approaches for generic high-d vectors [8, 16, 29, 70]
(for exhaustive surveys, see [26, 60]).

Exact similarity search methods can be classified into sequential
and indexing methods. Sequential methods answer a similarity
search query in one phase, reading each candidate sequentially
from the raw data file and comparing it to the query. Indexes use a
filter and refine approach to answer a similarity query. A pre-built
index is used to filter candidates, which are then compared to the
query in the raw high-d space for refinement [29, 34, 52, 69, 70, 77].
We note that all indexing methods depend on lower-bounding,
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which allows indexes to prune the search space with the guarantee
of no false dismissals [28].

[Approximate Search] Since exact similarity search is expensive,
approximate techniques have been proposed to improve search
efficiency at the expense of accuracy. The key research problem in
approximate search is making the right trade-offs between accu-
racy, efficiency and footprint.
Approximate Search With Guarantees. 𝛿-𝜖-approximate search
dates from 1998 [37] and gave rise to a rich family of LSH algo-
rithms [67], which solve the problem in sub-linear time, for 𝛿 < 1.
The main idea is that two neighbors in a high-d space will remain
in close proximity when projected to a lower dimensional space.
There exist many variants of LSH, either proposing different hash
functions to support particular similarity measures [11, 17, 31], or
improving the theoretical bounds on query accuracy (i.e., 𝛿 or 𝜖),
query efficiency or the index size [36, 63].

A 𝛿-𝜖-approximate search algorithm was also proposed for the
MTree [15], and the same ideas were used to extend existing exact
data series techniques to enable them to support 𝛿-𝜖-approximate
search [27]. These extensions outperformed theMTree and the state-
of-the-art LSH techniques [36, 63] across the board in efficiency,
accuracy and footprint, in-memory and on-disk, using real and
synthetic datasets.
Approximate Search Without Guarantees. As LSH-based tech-
niques require high footprint and are considered slow for many
applications, 𝑛𝑔-approximate methods that sacrifice guarantees
all together were proposed to provide answers faster with good
empirical accuracy. The most popular methods in this class are
neighborhood graphs [18, 30, 49] and inverted indexes [6, 32, 39].
HNSW [6, 49], a proximity method based on navigable small
world graphs, is considered the best contender for in-memory 𝑛𝑔-
approximate search [5, 27, 45], while data series similarity search
methods have superior performance on-disk [27].

The practicality of 𝑛𝑔-approximate similarity search will be fur-
ther enhanced by improving the footprint and indexing efficiency
of existing neighborhood-based methods, and designing new tech-
niques that scale to disk-based data [38].

[Progressive Search] Although the recent state-of-the-art exact
techniques push the efficiency frontier, we observe that their query
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Figure 1: Taxonomy of similarity search methods.

answering times are still not satisfactory for interactive analytics.
A promising research direction is to equip exact algorithms with
progressive query answering so that they return progressive esti-
mates of the final answer with probability guarantees supporting
interactive exploration [65, 74].

We will demonstrate the importance of providing progressive
similarity search results on large high-d vector collections. For ex-
act search in particular, there is a gap between the time the 1st
Nearest Neighbor (1-NN) is found and the time when the search al-
gorithm terminates, which means that users often wait without any
improvement in their answers. In some cases, high-quality approxi-
mate answers are found very early, e.g., in less than one second, so
they can support highly interactive visual analysis tasks [33].

Similar observations are also true for approximate search. Li
et al. [44] propose a machine learning method, developed on top
of an inverted-file (IVF [39] and IMI [6, 49]) and a k-NN graph
(HNSW [6, 49]) similarity search techniques, that solves the problem
of early termination of approximate NN queries, while achieving a
target recall.

[Revisiting Guarantees] We observe that popular 𝑛𝑔-
approximate techniques may return incomplete result sets,
e.g., retrieving only a subset of the neighbors for a 𝑘-NN query,
yet establishing guarantees on search results is important for
several applications [53]. Techniques that offer guarantees, focus
on two dimensions that relate to data quality: query accuracy and
answering time. Key future directions in this area are extending
new types of guarantees and developing new cost models. These
will also be relevant for the efforts on progressive similarity search.

In the approximate search literature, query accuracy has been
evaluated using recall, and approximation error. LSH techniques are
considered the state-of-the-art in approximate search with theoret-
ically proven sublinear time performance and probabilistic guaran-
tees on accuracy (approximation error) [47]. Recent results though,
indicate that using the approximate search functionality of data
series techniques provides tighter bounds than LSH and a much
better performance in practice, with experimental accuracy levels
well above the theoretical accuracy guarantees [27]. Note that LSH
techniques can only provide probabilistic answers (𝛿 < 1), whereas
the extended data series methods can also answer exact and 𝜖-
approximate queries (𝛿 = 1). A promising research direction is to
improve the existing guarantees, or establish new ones: (1) adding
guarantees on query time performance; (2) developing probabilistic
or deterministic guarantees on the recall or MAP value of a result
set, instead of the commonly used distance approximation error. It
has been demonstrated that Recall and MAP are better indicators of
accuracy, because even small approximation errors may still result
in low recall/MAP values [4, 27].

[AI-driven Similarity Search] Data Representation. Similarity
search methods rely on dimensionality reduction to achieve effi-
ciency. Some works proposed learned hashed functions [14, 48]
while others introduced learned quantization techniques [50, 71]. It
would be worthwhile to further explore howmachine learning algo-
rithms can improve dimensionality reduction techniques [68], and
tailor them to datasets from various domains (data series, images,
deep network embeddings). It would then be critical to establish



lower-bounds for these learned summarizations so that they can
be exploited by indexes.
Search and Indexing. Machine learning techniques have been lever-
aged to build indexing structures for similarity search, including
kNN graphs [62] and multidimensional indexes [2]. Other works
have focused on improving search performance and accuracy [58].

Approximate similarity search techniques based on data series
indexes [27] are very practical because they build the index once
and tune the desired accuracy/efficiency tradeoff at query time. A
promising research direction is to exploit AI to learn more effective
stopping conditions, which can further improve the efficiency of
these techniques. Another interesting direction is to build upon
recent results for data distribution estimation [64], in order to facil-
itate query answering over high-d datasets.
Performance Tuning. Tuning most approximate similarity search
techniques based on LSH, 𝑘-NN graphs and inverted indexes is
cumbersome and time-consuming [27]. For instance, QALSH [36]
needs to build a different index for each desired query accuracy.
This is a serious drawback that concerns also IMI and HSNW, which
are regarded among the best 𝑛𝑔-approximate methods. The fact that
the speed-accuracy tradeoff depends not only on query answering,
but also on index building, means that an index may need to be
built many times, using different parameters, before finding the
right speed-accuracy tradeoff. Besides, the optimal settings may
differ across datasets, or different dataset sizes for the same dataset.
Developing auto-tuning methods for these techniques is both an
interesting problem and a necessity.

[Systems Considerations] Modern Hardware and Distribution.
A number of similarity search techniques have been proposed for
modern hardware, focusing on SIMD, multi-socket architectures,
the GPU and SSD storage [42, 54–56], as well as on distributed
architectures [7, 72, 73, 75], which we will present and discuss.
Interesting directions include the development of methods for ad-
vanced technologies, such as FPGA and NVM.
End-to-end Solutions While most studies have focused on the high-
d similarity search problem from an algorithmic point of view,
more effort should go into building end-to-end systems that provide
native support for high-d vectors, including similarity search, which
is the basis for building complex analytics. There is a significant
effort under way in the context of data series [40], though, more
advanced and general systems are needed.

[Benchmarks] Despite the importance of benchmarking for eval-
uating the performance of existing solutions and identifying op-
portunities for improvement, currently, there exists no benchmark
for scalable similarity search. A notable effort is [5]; however it
covers only small in-memory datasets and a subset of the popular
similarity search approaches. The community can build on this
effort, leveraging a number of experimental evaluations conducted
in this area [26, 27, 45].

3 RELATION TO PREVIOUS TUTORIALS
The similarity search problem is fundamental in computer science
and has been addressed in previous tutorials [41, 61], which are
over a decade old. The most recent relevant tutorial is [59]; however,
its focus is on approximate techniques from the high-d community

only, and does not cover a multitude of novel techniques with better
scalability properties that, in addition, cover the entire spectrum
of approximate to exact query answering. Our tutorial not only
covers the state-of-the-art techniques in the field deriving from
different communities, but also compares their performance, shares
insights about their strengths and weaknesses, and emphasizes the
key open research directions in the field.

Another relevant tutorial has appeared at ICDE [25]. That tuto-
rial addresses single-node, exact and approximate similarity search
techniques. In contrast, we focus on the following novel and emerg-
ing research directions in this area: (i) progressive exact and ap-
proximate similarity search; (ii) parallel and distributed exact and
approximate similarity search; and (iii) AI-driven similarity search.
These aspects are necessary for modern scalable and interactive
data science applications handling massive high-d vector collec-
tions.

Detailed descriptions of the data series methods can be found in
previous tutorials [22, 24].

4 PRESENTERS
Karima Echihabi is an Assistant Professor at UM6P, Morocco.
She has conducted extensive experimental evaluations on high-d
similarity search (published in PVLDB).
Kostas Zoumpatianos is a Marie Curie Fellow affiliated with Har-
vard Univ. and Univ. of Paris, working on data series management
and adaptive data systems.
Themis Palpanas is Senior Member of the French Univ. Institute
(IUF) and Professor at the Univ. of Paris, with expertise on data
series management and analytics.
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