
dCAM: Dimension-wise Class Activation Map
for Explaining Multivariate Data Series Classification
Paul Boniol

Université Paris Cité

boniol.paul@gmail.com

Mohammed Meftah

EDF R&D

mohammed.meftah@edf.fr

Emmanuel Remy

EDF R&D

emmanuel.remy@edf.fr

Themis Palpanas

Université Paris Cité & IUF

themis@mi.parisdescartes.fr

ABSTRACT
Data series classification is an important and challenging problem

in data science. Explaining the classification decisions by finding

the discriminant parts of the input that led the algorithm to some

decision is a real need in many applications. Convolutional neu-

ral networks perform well for the data series classification task;

though, the explanations provided by this type of algorithms are

poor for the specific case of multivariate data series. Addressing

this important limitation is a significant challenge. In this paper, we

propose a novel method that solves this problem by highlighting

both the temporal and dimensional discriminant information. Our

contribution is two-fold: we first describe a convolutional architec-

ture that enables the comparison of dimensions; then, we propose

a method that returns dCAM, a Dimension-wise Class Activation

Map specifically designed for multivariate time series (and CNN-

based models). Experiments with several synthetic and real datasets

demonstrate that dCAM is not only more accurate than previous

approaches, but the only viable solution for discriminant feature

discovery and classification explanation in multivariate time series.

CCS CONCEPTS
• Information systems→Data management systems; Information
systems applications; • Computing methodologies→Machine
learning.

KEYWORDS
database; time series; classification; deep learning

ACM Reference Format:
Paul Boniol, Mohammed Meftah, Emmanuel Remy, and Themis Palpanas.

2022. dCAM: Dimension-wise Class Activation Map for Explaining Multi-

variate Data Series Classification. In Proceedings of the 2022 International
Conference on Management of Data (SIGMOD ’22), June 12–17, 2022, Philadel-
phia, PA, USA. ACM, New York, NY, USA, 15 pages. https://doi.org/10.1145/

3514221.3526183

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

SIGMOD ’22, June 12–17, 2022, Philadelphia, PA, USA
© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-9249-5/22/06. . . $15.00

https://doi.org/10.1145/3514221.3526183

𝑑𝐶𝐴𝑀𝒞!

𝐶𝐴𝑀𝒞!

𝑡𝑖𝑚𝑒

𝑡𝑖𝑚𝑒

(a) Multivariate data series:
𝒞": Badminton smash

(b) Multivariate data series:
𝒞#: Badminton clear

𝑑𝐶𝐴𝑀𝒞"

𝐶𝐴𝑀𝒞"

𝑡𝑖𝑚𝑒

𝑡𝑖𝑚𝑒

𝐺𝑦𝑟!
𝐺𝑦𝑟"
𝐺𝑦𝑟#
𝐴𝑐𝑐!
𝐴𝑐𝑐"
𝐴𝑐𝑐#

𝑡𝑖𝑚𝑒 𝑡𝑖𝑚𝑒

𝐺𝑦𝑟!
𝐺𝑦𝑟"
𝐺𝑦𝑟#
𝐴𝑐𝑐!
𝐴𝑐𝑐"
𝐴𝑐𝑐#

𝐺𝑦𝑟!
𝐺𝑦𝑟"
𝐺𝑦𝑟#
𝐴𝑐𝑐!
𝐴𝑐𝑐"
𝐴𝑐𝑐#

𝐺𝑦𝑟!
𝐺𝑦𝑟"
𝐺𝑦𝑟#
𝐴𝑐𝑐!
𝐴𝑐𝑐"
𝐴𝑐𝑐#

𝐴𝑙𝑙 𝐴𝑙𝑙

Figure 1: CAM and dCAM computed for two instances (of (a)
"badminton smash" and (b) "badminton clear") of Racket-
Sport UCR/UEA dataset

1 INTRODUCTION
Several applications across many domains produce big collections

of data series
1
, which need to be processed and analyzed [5, 40, 41,

43]. Typical analysis tasks include pattern matching (or similarity

search) [15–17, 22, 34, 42, 49–51, 64], classification [14, 28, 38, 54,

55, 59, 61, 69], clustering [35, 44–46, 62], anomaly detection [6–

8, 20, 47, 56, 68], motif discovery [19, 36, 75], and others [29].

Data series classification is a crucial and challenging problem in

data science [18, 67]. To solve this task, various data series classi-

fication algorithms have been proposed in the past few years [3],

applied on a large number of use cases. Standard data series classi-

fication methods are based on distances to the instances’ nearest

neighbors, with k-NN classification (using the Euclidean or Dy-

namic Time Warping (DTW) distances) being a popular baseline

method [12]. Nevertheless, recent works have shown that ensemble

methods using more advanced classifiers achieve better perfor-

mance [4, 37]. Following recent breakthroughs in the computer

vision community, new studies successfully propose deep learning

methods for data series classification [9, 11, 27, 32, 63, 72, 73], such

as Convolutional Neural Network (CNN), Residual Neural Network

(ResNet) [65], and InceptionTime [28].

[Classification Explanation] While having a trained and accu-

rate classification model, finding explanations of the classification

result (i.e., finding the discriminative features that made the model

decide which class to attribute to each instance) is a challenging but

essential problem, e.g., in manufacturing for anomaly-based predic-

tive maintenance [70], or in medicine for robot-assisted surgeon

training [26]. Such discriminant features can be based on patterns of

interest that occur in a subset of dimensions at different timestamps

1
A data series, or data sequence, is an ordered sequence of points. If the dimension

that imposes the ordering of the sequence is time, then we talk about time series. In
this paper, we use the terms sequence, data series, and time series interchangeably.

https://doi.org/10.1145/3514221.3526183
https://doi.org/10.1145/3514221.3526183
https://doi.org/10.1145/3514221.3526183

or the same timestamp. For some CNN-based models, the Class

Activation Map (CAM) [74] can be used as an explanation for the

classification result. CAM has been used for highlighting the parts

of an image that contribute the most to a given class prediction and

has also been adapted to data series [27, 65].

[Challenges] Nevertheless, CAM for data series suffers from one

important limitation. Since CAM is a univariate time series (of

the same length as the input instances) with high values aligned

with the subsequences of the input that contribute the most for a

given class identification, in the specific case of multivariate data

series as input, no information can be retrieved from CAM on the

level of contribution of specific dimensions. As an example, Figure 1

illustrates CAM (top heatmaps) applied on two instances (belonging

to two different classes) of the RacketSport UCR/UEA dataset. We

observe that CAM explains why the data series correspond to a

badminton "smash" or "clear" gesture by highlighting the same

temporal window across all dimensions (variables). It is thus not

clear what aspect of the gesture distinguishes it from the other.

Addressing this significant limitation is a sought-after challenge.

[Contributions] In this paper, we present a novel approach that

fills-in the gap by addressing this limitation for the popular CNN-

based models. We propose a novel data organization and a new

CAM technique, dCAM (Dimension-wise Class Activation Map),

that is able to highlight both the temporal and dimensional infor-
mation at the same time. For instance, in Figure 1, dCAM (bottom

heatmaps) is pointing to specific subsequences of particular dimen-

sions that explain why the two gestures are different. Our method

requires only a single training phase, is not constrained by the

architecture type, and can efficiently and effectively retrieve dis-

criminant features thanks to a technique that exploits information

from different permutations of the input data dimensions. Thus,

any kind of architecture in which we can apply CAM can benefit

from our approach. Our contributions are as follows.

• We develop a new method that transforms convolutional-based

neural network architectures: whereas previous network archi-

tectures can only provide an explanation for all the dimensions

together, our transformation represents the only deep learning

solution that enables explanation in individual dimensions. Our

approach can be used with any deep network architecture with

a Global Average Pooling layer.

• We demonstrate how we can apply our method to three modern

deep learning classification architectures.We first describe dCNN,

inspired by the traditional CNN architecture. We then describe

how more advanced architectures, such as ResNet and Inception-

Time, can be transformed as well. We name these transformed

architectures dResNet and dInceptionTime.

• We propose dCAM, a novel method (based on dCNN/ dRes-

Net/dInceptionTime) that returns a multivariate CAM, identify-

ing the important parts of the input series for each dimension.

• We experimentally demonstrate with several synthetic and real

datasets that (among Class Activation Map-based methods)

dCAM is not only more accurate in classification than previ-

ous approaches, but the only viable solution for discriminant

feature discovery and classification explanation in multivariate

time series. Finally, we make our code available online [1].

2 BACKGROUND AND RELATEDWORK
We first present useful notations and definitions, and discuss related

work. Table 1 summarizes the symbols we use in this paper.

[Data Series] A multivariate, or D-dimensional data series T ∈
R(D ,n)

is a set of D univariate data series of length n. We note

T = [T (0), ...,T (D−1)] and for j ∈ [0,D − 1], we note the univariate

data series T (j) = [T
(j)
0
,T
(j)
1
, ...,T

(j)
n−1
]. A subsequence T

(j)
i ,ℓ ∈ R

ℓ
of

the dimension T (j) of the multivariate data series T is a subset of

contiguous values from T (j) of length ℓ (usually ℓ ≪ n) starting at

position i; formally, T
(j)
i ,ℓ = [T

(j)
i ,T

(j)
i+1
, ...,T

(j)
i+ℓ−1

].

[Neural Network Notations] We are interested in classifying

data series using a neural network architecture model. We define

the neural network input as X ∈ Rn for univariate data series (with

xi the i
th

value and Xi ,ℓ the sequence of ℓ values following the i
th

value), and X ∈ R(D ,n)
for multivariate data series (with x j ,i the

ith value on the jth dimension and Xj ,i ,ℓ the sequence of ℓ values

following the ith value on the jth dimension).

Dense Layer: The basic layer of neural network is a fully connected

layer (also called Dense layer) in which every input neuron is

weighted and summed before passing through an activation func-

tion. For univariate data series, given an input data series X ∈ Rn ,
given a vector of weightsW ∈ Rn and a vector B ∈ Rn , we have:

h = fa

(∑
xi ,wi ,bi ∈(X ,W ,B)

wi ∗ xi + bi

)
(1)

fa is called the activation function and is a non-linear function.

The commonly used activation function fa is the rectified linear

unit (ReLU) [39] that prevents the saturation of the gradient (other

functions that have been proposed are Tanh and Leaky ReLU [66]).

For the specific case of multivariate data series, all dimensions are

concatenated to give input X ,W ∈ RD∗n . Finally, one can decide to

have several output neurons. In this case, each neuron is associated

with a differentW and B, and Equation 1 is executed independently.

Convolutional Layer: This layer has played a significant role for

image classification [31, 33, 65], and recently for data series classi-

fication [27]. Formally, for multivariate data series, given an input

vector X ∈ R(D ,n)
, and given matrices weights W,B ∈ R(D ,ℓ)

, the

output h ∈ Rn of a convolutional layer can be seen as a univariate

data series. The tuple (W ,B) is also called kernel, with (D, ℓ) the
size of the kernel. Formally, for h = [h0, ...,hn], we have:

hi = fa

(∑
X (j) ,W (j) ,B(j)∈
(X,W,B)

∑
xk ,wk ,bk ∈

(X (j)
i−

⌊
ℓ
2

⌋
,i+

⌊
ℓ
2

⌋ ,W (j) ,B(j))
wk ∗ xk + bk

)
(2)

In practice, we have several kernels of size (D, ℓ). The result is a
multivariate series with dimensions equal to the number of kernels,

nf . For a given input X ∈ R(D ,n)
, we define A ∈ R(nf ,n) to be the

output of a convolutional layer conv(nf , ℓ). Am is thus a univariate

series corresponding to the output of themth
kernel. We denote

with Am (T) the univariate series corresponding to the output of

themth
kernel, when T is used as input.

Global Average Pooling Layer: Another type of layer frequently

used is pooling. Pooling layers compute average/max/min opera-

tions, aggregating values of previous layers into a smaller number

of values for the next layer. A specific type of pooling layer is Global

𝐶𝑜𝑛𝑣(𝑛!", ℓ) 𝐶𝑜𝑛𝑣(𝑛!#, ℓ)𝐶𝑜𝑛𝑣(𝑛!$, ℓ)

…

GAP

dense layer

…

𝐶𝐴𝑀𝒞& = %
'

𝑤'
𝒞&𝐴',)

𝒞*
𝒞"

𝒞+

…

ℓ

ℓ

𝐴,!"

𝐴'

𝐴"

(c.2) Given class 𝒞- :

𝑇(/0$)

𝑇(*)

𝑇(/0")

(d.2) Emphasize discriminant
features

(a.2) Given
an instance 𝑇

(b.2) Compute 𝐴, the output of the last
convolutional layer of the 𝑚23 kernel

𝐶𝑜𝑛𝑣(𝑛!", ℓ) 𝐶𝑜𝑛𝑣(𝑛!#, ℓ)𝐶𝑜𝑛𝑣(𝑛!$, ℓ)

…

…

time series
length

(c.1) Given class 𝒞- :

𝑖
(d.1) Emphasize discriminant

features

(a.1) Given
an instance 𝑇

(b.1) Compute 𝐴, the output of the last
convolutional layer of the 𝑚23 kernel

𝐶𝐴𝑀𝒞&,) = %
'

𝑤'
𝒞&𝐴',)

𝑇(/0$) 𝑇(*)𝑇(/0")

…ℓ

ℓℓ

𝐴,!" 𝐴' 𝐴"

GAP

𝒞*
𝒞"

𝒞+

dense layer

𝑎 𝐶𝑁𝑁 𝑎𝑟𝑐ℎ𝑖𝑡𝑒𝑐𝑡𝑢𝑟𝑒 𝑏 𝑐𝐶𝑁𝑁 𝑎𝑟𝑐ℎ𝑖𝑡𝑒𝑐𝑡𝑢𝑟𝑒

Figure 2: Illustration of Class Activation Map for (a) CNN architecture and (b) cCNN architecture with three convolutional
layers (nf 1

, nf 2
, and nf 3

different kernels respectively of size all equal to ℓ).

Average Pooling (GAP). This operation is averaging an entire out-

put of a convolutional layer Am (T) into one value, thus providing

invariance to the position of the discriminative features.

Learning Phase: The learning phase uses a loss function L that

measures the accuracy of the model and optimizes the various

weights. For the sake of simplicity, we note Ω the set containing all

weights (e.g., matricesW and B defined in the previous sections).

Given a set of instances X, we define the average loss as: J (Ω) =
1

|X |

∑
X∈X L(X). Then for a given learning rate α , the average loss

is back-propagated to all weights in the different layers. Formally,

back-propagation is defined as follows: ∀ω ∈ Ω,ω ← ω − α ∂ J
∂ω . In

this paper, we use the stochastic gradient descent using the ADAM

optimizer [30] and cross-entropy loss function.

2.1 Convolutional-based Neural Network
We now describe the standard architectures used in the literature.

The first is Convolutional Neural Networks (CNNs) [27, 65]. CNN

is a concatenation of convolutional layers (joined with ReLU acti-

vation functions and batch normalization). The last convolutional

layer is connected to a Global Average Pooling layer and a dense

layer. In theory, instances of multiple lengths can be used with

the same network. A second architecture is the Residual Neural

Network (ResNet) [27, 65]. This architecture is based on the clas-

sical CNN, to which we add residual connections between suc-

cessive blocks of convolutional layers to avoid that the gradients

explode or vanish. Other methods have been proposed in the liter-

ature [11, 27, 28, 58], though, CNN and ResNet have been shown

to perform the best for multivariate time series classification [27].

InceptionTime [28] has not been evaluated on multivariate data

series, but demonstrated state-of-the-art performance on univariate

data series. Finally, other kinds of architectures than convolutional

ones have been proposed in the literature. Attention-based models

have been introduced, such as TapNet [71]. For the specific case of

temporal data, recurrent-based models, such as Recurrent Neural

Neworks [53] (RNN), Long-Short Term Memory [23] (LSTM), and

Gated Recurrent Unit [10] (GRU) have received a lot of attention.

These three models are relevant to the data series classification task,

and we include them in our experimental study.

2.2 Class Activation Map (CAM)
Once the model is trained, we need to find the discriminative fea-

tures that led the model to decide which class to attribute to each

instance. Several methods have been proposed to extract meaning-

ful information from CNNs, such as grad-CAM [57] that uses the

gradients of the weights to compute the discriminant features, and

CAM [74]. The latter has been proposed to highlight the parts of

an image that contributes the most to a given class identification.

The latter has been experimented on data series [27, 65] (univari-

ate and multivariate). This method explains the classification of

a certain deep learning model by emphasizing the subsequences

that contribute the most to a certain classification. Note that the

CAM method can only be used if (i) a Global Average Pooling layer

has been used before the so f tmax classifier, (ii) the model accuracy

is high enough. Thus, only the standard architectures CNN and

ResNet proposed in the literature can benefit from CAM. We now

define the CAM method [27, 65]. For an input data series T , let
A(T) be the result of the last convolutional layer conv(nf , ℓ), which
is a multivariate data series with nf dimensions and of length n.
Am (T) is the univariate time series for the dimensionm ∈ [1,nf]

corresponding to themth
kernel. Letw

Cj
m be the weight between

the mth
kernel and the output neuron of class Cj ∈ C. Since a

Global Average Pooling layer is used, the input to the neuron of

class Cj can be expressed by the following equation:

zCj (T) =
∑
m

w
Cj
m

∑
Am,i (T)∈Am (T)

Am,i (T).

The second sum represents the averaged time series over the whole

time dimension. Note that weight w
Cj
m is independent of index i .

Thus, zCj can also be written by the following equation:

zCj (T) =
∑

Am,i (T)∈Am (T)

∑
m

w
Cj
m Am,i (T).

Finally, CAMCj (T) = [CAMCj ,0(T), ...,CAMCj ,n−1
(T)] that under-

lines the discriminative features of class Cj is defined as follows:

∀i ∈ [0, n − 1],CAMCj ,i (T) =
∑
m

w
Cj
m Am,i (T).

As a consequence, CAMCj (T) is a univariate data series where

each element at index i indicates the significance of the index i
(regardless of the dimensions) for the classification as class Cj .

Figure 2(a) depicts the process of computing CAM and finding the

discriminant subsequences in the initial series.

2.3 CAM Limitations for Multivariate Series
As mentioned earlier, a CAM that highlights the discriminative

subsequences of class Cj , CAMCj (T), is a univariate data series.

The information provided by CAMCj (T) is sufficient for the case

of univariate series classification, but not for multivariate series

classification. Even though the significant temporal index may be

correctly highlighted, no information can be retrieved on which

dimension is significant or not. Solving this serious limitation is a

significant challenge in several domains. For that purpose, one can

propose rearranging the input structure to the network so that the

CAM becomes a multivariate data series. A new solution would be

to decide to use a 2D convolutional neural network with kernel size

(ℓ, 1), such that each kernel slides on each dimension separately.

Thus, for an input data seriesT ,Am (T)would become amultivariate

data series for the variablem ∈ [1,nf], andA
(d)
m (T) ∈ Am (T)would

be a univariate time series that would correspond to the dimension

d of the initial data series. We call this solution cCNN, and we

use cCAM to refer to the corresponding Class Activation Map.

Figure 2(b) illustrates cCNN architecture and cCAM. Note that if

a GAP layer is used, then architectures other than CNN can be

used, as well, such as ResNet and InceptionTime. We denote these

baselines as cResNet and cInceptionTime.
Nevertheless, new limitations arise from this solution. The di-

mensions are not compared together: each kernel of the input layer

will take as input only one of the dimensions at a time. Thus, fea-

tures depending on more than one dimension will not be detected.

Recent studies study the specific case of multivariate data se-

ries classification explanation. A benchmark study analyzing the

saliency/explanation methods for multivariate time series con-

cluded that the explainable methods work better when the multi-

variate data series is handled as an image [25], such as in the cCNN

architecture. This confirms the need to propose a method specifi-

cally designed for multivariate data series. Finally, some recently

proposed approaches [2, 24] address the problems of identifying

the discriminant features and discriminant temporal windows in-

dependently from one another. For instance, MTEX-CNN [2] is an

architecture composed of two blocks. The 1st block is similar to

cCNN. The 2nd block consists of merging the results of the 1st

block into a 1D convolutional layer, which enables comparing di-

mensions. A variant of CAM [57] is applied to the last convolutional

layer of the 1st block in order to find discriminant features for each

dimension. The discriminant temporal windows are detected with

the CAM applied to the last convolutional layer of the 2nd block. In

practice however, this architecture does not manage to overcome

the limitations of cCNN: discriminant features that depend on sev-

eral dimensions are not correctly identified by MTEX-CNN, which

has similar accuracy to cCNN (we elaborate on this in Section 5).

In our experimental evaluation, we compare our approach to

the MTEX-CNN, cCNN, cResNet and cInceptionTime, and further

demonstrate their limitations when addressing the problem at hand.

3 PROBLEM FORMULATION
Given a set T of multivariate data seriesT = {T (0),T (1), ...,T (D−1)}

of D dimensions belonging to classes Cj ∈ C, and a model

f : T → C, we aim to find a function д(T , f) that returns a multi-

variate series д(T , f , Cj) = {T
(0)′,T (1)

′

, ...,T (D−1)′}, in which T (i)
′

Symbol Description
T a data series

|T | length of T

T (i) ith dimensions of T
D number of dimension

C set of all classes

Cj one class of C

w
Cj
m

weight of connecting themth
convolutional

layer and class Cj neuron

Am (T) output of themth
convolutional layer for input T

zCj (T) output of Cj neuron for input T

CAMCj (T) Class Activation Map for class Cj and input T

ΣT set of all possible permutations of T dimensions

SiT
T with one possible permutation of

its dimensions (SiT ∈ ΣT)

k number of permutations

nд
number of permutations that

have been correctly classified by the model

Table 1: Table of symbols.

is a series that has high values if the corresponding subsequences

in Ti discriminate T of belonging to another class than Cj .

4 PROPOSED APPROACH
Based on a new architecture that we call dCNN (and variant archi-

tectures, e.g., dResNet, dInceptionTime), dCAM aims to provide a

multivariate CAM pointing to the discriminant features within each

dimension. Contrary to the previously described baseline (cCNN,

cResNet and cInceptionTime), one kernel on the first convolutional

layer will take as input all the dimensions together with different

permutations. Thus, similarly to the standard CNN architecture,

features depending on more than one dimension will be detectable

while still having a multivariate CAM. Nevertheless, the latter has

to be processed such that the significant subsequences are detected.

We first describe the proposed architecture dCNN that we need in

order to provide a dCAM, while still being able to extract multivari-

ate features. We then demonstrate that the transformation needed

to change CNN to dCNN can also be applied to other, more sophis-

ticated architectures, such as ResNet and InceptionTime, which

we denote as dResNet and dInceptionTime. We demonstrate that

using permutations of the input dimensions makes the classifica-

tion more robust when important features are localized into small

subsequences within some specific dimensions.

We then present in detail how we compute dCAM (based on a

dCNN/dResNet/dInceptionTime architecture). Our solution benefits

from the permutations injected into the dCNN to identify the most

discriminant subsequences used for the classification decision.

4.1 Dimension-wise Architecture
As mentioned earlier, the classical CNN architecture mixes all di-

mensions in the first convolutional layer. Thus, the CAM is a uni-

variate data series and does not provide any information on which

dimension is the discriminant one for the classification. To address

this issue, we can use a two-dimensional CNN architecture by re-

organizing the input (i.e., the cCNN solution we described earlier).

In this architecture, one kernel (of size (1, ℓ, 1)) slides on each dimen-

sion independently. Thus, for a given data series (T (0), ...,T (D−1))

of length n, the convolutional layers returns an array of three di-

mensions (nf ,D,n), each rowm ∈ [0,D − 1] corresponding to the

𝐶𝑜𝑛𝑣(𝑛!", ℓ) 𝐶𝑜𝑛𝑣(𝑛!#, ℓ)𝐶𝑜𝑛𝑣(𝑛!$, ℓ)

…

GAP

dense layer

…

…
…

…

𝐶𝐴𝑀𝒞! 𝐶 𝑇 = -
&
𝑤&
𝒞!𝐴& 𝐶 𝑇

𝒞'
𝒞"

𝒞(

…

𝐶 𝑇 =
𝑇(*+")

⋮
𝑇(")
𝑇(')

𝑇(') ⋯ 𝑇(*+#)
⋮

𝑇($)
⋱
⋱

⋮
𝑇(*+")

𝑇(") ⋯ 𝑇(*+$)

𝑇(*+$)
⋮

𝑇(')
𝑇(*+")

=

For a given multivariate time series
𝑇 = {𝑇(') , … , 𝑇(*+")}:

ℓ

ℓ

𝐴-"#

𝐴&

𝐴"

Given class 𝒞.:

Figure 3: dCNN architecture and application of the CAM.

extracted features on dimensionm. Nevertheless, the kernels (1, ℓ, 1)

get as input each dimension independently: such an architecture

cannot learn features that depend on multiple dimensions.

4.2 A first Architecture: dCNN
In order to have the best of both cases, we propose the dCNN archi-

tecture, where we transform the input into a cube, in which each

row contains a given combination of all dimensions. One kernel

(of size (D, ℓ, 1)) slides on all dimensions D times. This allows the

architecture to learn features on multiple dimensions simultane-

ously. Moreover, the resulting CAM is a multivariate data series. In

this case, one row of the CAM corresponds to a given combination

of the dimensions. However, we still need to be able to retrieve

information for each dimension separately, as well. To do that, we

make sure that each row contains a different permutation of the

dimensions. As the weights of the kernels are at fixed positions (for

specific dimensions), a permutation of the dimensions will result

in a different CAM. Formally, for a given data series T , we note

C(T) ∈ R(D ,D ,n)
the input data structure of dCNN:

C(T) =
©­­­«
T (D−1) T (0) ... T (D−3) T (D−2)

: : ... : :

T (1) T (2) ... T (D−1) T (0)

T (0) T (1) ... T (D−2) T (D−1)

ª®®®¬
Note that each row and column of C(T) contains all dimensions.

Thus, a given dimension T (i) is never at the same position in C(T)
rows. The latter is a crucial property for the computation of dCAM.

In practice, we guarantee the latter property by shifting by one posi-

tion the order of the dimensions. ThusT (0) in the first row is aligned

with T (1) in the second row. A different order of T dimensions will

thus generate a different matrix C(T).
Figure 3 depicts the dCNN architecture. The input C(T) is for-

warded into a classical two-dimensional CNN. The rest of the archi-

tecture is independent of the input data structure. The latter means

that any other two-dimensional architecture (containing a Global

Average Pooling) can be used (such as ResNet), by only adapting

the input data structure. Similarly, the training procedure can be

freely chosen by the user. For the rest of the paper, we will use the

cross-entropy loss function and the ADAM optimizer.

Observe that multiple permutations of the original multivariate

series will be processed by several convolutional layers, enabling the

kernel to examine multiple different combinations of dimensions

and subsequences. Note that the kernels of the dCNN will be sparse,

which has a significant impact on overfitting.

4.3 The dResNet/dInceptionTime Architectures
As mentioned earlier, any architecture using a GAP layer after the

last convolutional layer can benefit from dCAM. Thus, different

(and more sophisticated) architectures can be used with our ap-

proach. To that effect, we propose two new architectures dResNet

and dInceptionTime, based on the state-of-the-art architectures

ResNet [65] and InceptionTime [28]. The transformations that lead

to dResNet and dInceptionTime are very similar to that from CNN

to dCNN, using C(T) as input to the transformed networks. The

convolutional layers are transformed from 1D (as originally pro-

posed [28, 65]) to 2D. Similarly to dCNN, the kernel sizes are (D, ℓ, 1)
and convolute over each row of C(T) independently.

We demonstrate in the experimental section that these architec-

tures do not affect the usage of our proposed approach dCAM, and

we evaluate the choice of architecture on both classification and

discriminant features identification.

4.4 Dimension-wise Class Activation Map
At this point, we have our network trained to classify instances

among classes C0, C1, ..., Cp . We now explain how to compute

dCAM that will identify discriminant features within dimensions.

We assume that the network has to be accurate enough in order to

provide a meaningful dCAM. We evaluate in the experimental sec-

tion the relation between the classification accuracy of the network

and the discriminant features identification accuracy of dCAM.

At first glance, we can compute the regular CAM

CAMCj (C(T)) =
∑
m w

Cj
m Am (C(T)). However, a high value

on the ith row at position t on CAMCj (C(T)) does not mean that

the subsequence at position t on the ith dimension is important

for the classification. It instead means that the combination of

dimensions at the ith row of C(T) is important.

4.4.1 Random Permutation Computations. Given those different

combinations of dimensions (i.e., one row of C(T)) produce dif-

ferent outputs (i.e., the same row in CAMCj (C(T))), the positions

of the dimensions within the C(T) rows have an impact on the

CAM. Consequently, for a given combination of dimensions, we

33

𝐶(𝑆!")=
𝑇($)
⋮

𝑇(")
𝑇(&)

𝑇(") ⋯
⋮

𝑇(&)
⋱
⋱

𝑇(') ⋯

𝑇(()
⋮

𝑇($)
𝑇(")

𝑇("), 𝑇(&), 𝑇('), 𝑇()), 𝑇((), 𝑇($)

𝐶(𝑆!&) =
𝑇(&)
⋮

𝑇(')
𝑇($)

𝑇($) ⋯
⋮

𝑇(&)
⋱
⋱

𝑇(() ⋯

𝑇())
⋮

𝑇($)
𝑇(&)

𝑇('), 𝑇(&), 𝑇("), 𝑇()), 𝑇 (, 𝑇($)

𝐶(𝑆!') =
𝑇(')
⋮

𝑇(()
𝑇($)

𝑇(() ⋯
⋮

𝑇($)
⋱
⋱

𝑇()) ⋯

𝑇(&)
⋮

𝑇(")
𝑇(')

𝑇((), 𝑇($), 𝑇('), 𝑇(&), 𝑇()), 𝑇(")

Position 2 𝐶𝐴𝑀
(𝐶(𝑆! "))

𝐶𝐴𝑀
(𝐶(𝑆! &))

𝐶𝐴𝑀
(𝐶(𝑆! '))

Figure 4: Example of Class Activation Map results for differ-
ent permutations.

can assume that at least one dimension at a given position is re-

sponsible for the high value in the CAM row. For the rest of this

paper, we use ΣT as the set of all possible permutations of T di-

mensions, and SiT ∈ ΣT for a single permutation of T . E.g., for a

given data series T = {T (0),T (1),T (2)}, one possible permutation is

SiT = {T
(1),T (0),T (2)}.

Figure 4 depicts an example of CAMs for different permutations.

In this Figure, for three given permutations ofT (i.e., S0

T , S
1

T and S2

T),

we notice that when T (2) is in position two of the second row of

C(SiT), the Class Activation MapCAM(C(SiT)) is greater than when

T (2) is not in position two. We infer that the second dimension

of T in position two is responsible for the high value. Thus, we

may examine different dimension combinations by keeping track of

which dimension at which position is activating the CAM the most.

We now describe the steps necessary to retrieve this information.

Definition 1. For a given data seriesT = {T (0),T (1), ...,T (D−1)}

of length n and its input data structure C(T), we define function idx ,
such that idx(T (i),pj) returns the row indices in C(T) that contain
the dimension T (i) at position pj .

We can now define the following transformationM.

Definition 2. For a given data seriesT = {T (0),T (1), ...,T (D−1)}
of length n, a given class Cj and Class Activation Map, we define
M(CAMCj (C(T))) ∈ R

(D ,D ,n) (with CAMCj (C(T)) ∈ R
(D ,n) and

CAMCj (C(T))i its i
th row) as follows:

M(CAMCj (C(T))) =©­­­­«
CAMCj (C(T))idx (T (0) ,0) ... CAMCj (C(T))idx (T (0) ,D−1)

CAMCj (C(T))idx (T (1) ,0) ... CAMCj (C(T))idx (T (1) ,D−1)

: ... :

CAMCj (C(T))idx (T (D−1) ,0)
... CAMCj (C(T))idx (T (D−1) ,D−1)

ª®®®®¬
(3)

Figure 5 depicts theM transformation. As explained in Defini-

tion 2, theM transformation enriches the Class Activation Map by

adding the dimension position information. Note that if we change

the dimension order of T , theirM(CAMCj (C(T))) changes as well.

Indeed, for a given dimensionT (i) and position pj , idx(T
(i),pj) will

not have the same value for two different dimension orders of T .
Thus, computingM(CAMCj (C(T))) for different dimension orders

of T will provide distinct information regarding the importance of

a given position (subsequence) in a given dimension. We expect

that subsequences (of a specific dimension) that discriminate one

class from another will also be associated (most of the time) with a

high value in the Class Activation Map.

𝑇 ("), 𝑇 ($), … , 𝑇 (%&$)

𝑇 (%&$), 𝑇 ("), … , 𝑇 (%&')

𝑇 ((&$), 𝑇 ((), … , 𝑇 (%&(&$)

⋮

⋮

𝑎 𝐶𝐴𝑀𝒞$ 𝐶 𝑆"#

𝑡𝑖𝑚𝑒
𝑇(")
𝑇($)

𝑇(%&$)

𝑇(%&')

𝑇(()

𝑡𝑖𝑚𝑒
𝑝𝑜𝑠"

𝑝𝑜𝑠$

𝑝𝑜𝑠%&$

𝑇 ((), 𝑇 (()$), … , 𝑇 (%&()

𝐷
𝑖𝑚
𝑒𝑛
𝑠𝑖
𝑜𝑛
𝑠

𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑠

⋮

⋮

⋮

𝑏 ℳ 𝐶𝐴𝑀𝒞$ 𝐶 𝑆"#

⋮

𝑇(()𝑖𝑛 𝑝𝑜𝑠" ,
𝑎𝑡 𝑡𝑖𝑚𝑒 𝑡"

𝑇(()𝑖𝑛 𝑝𝑜𝑠$,
𝑎𝑡 𝑡𝑖𝑚𝑒 𝑡"

𝑡"

𝑡"

𝐶 𝑆*+

Figure 5: TransformationM for a given data series T .

4.4.2 Merging Permutations. We computeM(CAMCj (C(ST))), for
different ST ∈ ΣT .Note that the total number of permutations for

high-dimensional data series is enormous: |ΣT | = D!. In practice,

we only compute M for a randomly selected subset of ΣT . We

thus merge k = |ΣT | permutations SkT , by computing the averaged

matrix
¯MCj (T) of all theM transformations of the permutations:

¯MCj (T) =
1

|ΣT |

∑
SkT ∈ΣT

M(CAMCj (C(S
k
T)))

Figure 6 illustrates the process of computing
¯MCj (T) from the set

of permutations of T , ΣT . ¯MCj (T) can be seen as a summarization

of the importance of each dimension at each position in C(T), for
all the computed permutations. Figure 6(b’) (at the top of the figure)

depicts
¯MCj (T)d , which corresponds to the d

th
row (i.e., the dotted

box in Figure 6(b)) of
¯MCj (T). Each row of

¯MCj (T)d corresponds

to the average activation of dimension d (for each timestamp) when

dimension d is in a given position in C(T).
Note that all permutations ofT are forwarded into the dCNN net-

work without training it again. Thus, even though the permutations

ofT generate radically different inputs to the network, the network

can still classify most of the instances correctly. For k permutations,

we use nд to denote the number of permutations that the model

has correctly classified. We provide an analysis (see Section 5) of

nд/k w.r.t the classification accuracy of the model and the impact

that nд/k has on the discriminant features identification accuracy.

4.4.3 dCAM Extraction. We can now use the previously computed

¯MCj to extract explanatory information onwhich subsequences are

considered important by the network. First, we note that each row of

C(T) corresponds to the input format of the standard CNN architec-

ture. Thus, we expect that the result of a row of
¯MCj (one of the ten

lines in Figure 6(b)) is similar to the standard CAM. Hence, we can

assume that µ(¯MCj (T)) =
∑
d ∈[0,D−1]

∑
p∈[0,D−1]

¯M
d ,p
Cj
(T)/(2∗D)

is equivalent to standard Class Activation Map CAMCj (T) (this ap-
proximation is depicted in Figure 6(d)). Moreover, in addition to

the temporal information, we can extract temporal information per

dimension. We know that for a given position p and a given dimen-

sion d , ¯M
d ,p
Cj
(T) represents the averaged activation for a given set

of permutations. If the activation
¯M
d ,p
Cj
(T) for a given dimension is

constant (regardless of its value, or the position p), then the position
of dimension d is not important, and no subsequence in that dimen-

sion d is discriminant. On the other hand, a high or low value at a

𝜇 ℳ𝒞!(𝑇) ∗ 𝜎" ℳ𝒞!
#(𝑇)

(d) 𝑑𝐶𝐴𝑀𝒞$(𝑇)

𝑡%

…

…

(a) For a given multivariate time
series 𝑇 = {𝑇()), … , 𝑇(*+,)},

and 𝑆-. ∈ Σ- with Σ- the set of
permutations of the dimensions

of 𝑇:

𝐶𝐴𝑀
𝒞$ 𝐶

𝑆
& '

𝐶𝐴𝑀
𝒞$ 𝐶

𝑆
& (

𝐶𝐴𝑀
𝒞$ 𝐶 𝑆

&)

𝐶𝐴𝑀
𝒞$ 𝐶

𝑆
& "

𝐶𝐴𝑀
𝒞$ 𝐶 𝑆

& *

ℳ

(b) ℳ𝒞$(𝑇) =
*

|,-|
∑
.-
/∈ ,-

ℳ 𝐶𝐴𝑀𝒞$ 𝐶 𝑆&'

𝜇 ℳ𝒞$(𝑇)

𝑡%

(e) 𝑇𝑖𝑚𝑒 𝑠𝑒𝑟𝑖𝑒𝑠 𝑇

…

(c) 𝐶𝐴𝑀𝒞$(𝑇)

𝐷−1

𝐷−2

0

1

…

𝑆&
' =

𝑇 (#7*)
⋮

𝑇 (*)

𝑇 (%)

𝑇 (%) ⋯
⋮

𝑇 (")
⋱
⋱

𝑇 (*) ⋯

𝑇 (#7")
⋮

𝑇 (%)

𝑇 (#7*)

Standard 𝐶𝐴𝑀𝒞$ for 𝑘 random permutations of the dimensions

𝐴
𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛

𝑠𝑐𝑜𝑟𝑒

𝑇𝑖𝑚𝑒 𝑖𝑛𝑑𝑒𝑥

𝑃𝑜𝑠 0𝑃𝑜𝑠 1
𝑃𝑜𝑠 2
𝑃𝑜𝑠 3𝑃𝑜𝑠 4
𝑃𝑜𝑠 5
𝑃𝑜𝑠 6𝑃𝑜𝑠 7
𝑃𝑜𝑠 8
𝑃𝑜𝑠 9

(b’) Averaged Class Activation Map when Dimension 𝑑 is in position 3:
1
|Σ&|

O
."#∈,"

𝐶𝐴𝑀𝒞! 𝐶 𝑆&' 9:; & $,=>?)

𝑑

Figure 6: dCAM computation framework.

specific position p means that the subsequence at this specific posi-

tion is discriminant. While it is intuitive to interpret a high value, in-

terpreting a low value is counterintuitive. Usually, a subsequence at

position p with a low value should be regarded as non-discriminant.

Nevertheless, if the activation is low for p and high for other po-

sitions, then the subsequence at position p is the consequence of

the low value and is thus discriminant. We experimentally observe

this situation, where a non-discriminant dimension has a constant

activation per position (e.g., see dotted red rectangle in Figure 6(b):

this pattern corresponds to a non-discriminant subsequence of the

dataset). On the contrary, for discriminant dimensions, we observe

a strong variance for the activation per position: either high values

or low values (e.g., see solid red rectangles in Figure 6(b): these

patterns correspond to the (injected) discriminant subsequences

highlighted in red in Figure 6(e)). We thus can extract the significant

subsequences per dimension by computing the variance of all posi-

tions of a given dimension. We can filter out the irrelevant temporal

windows using the averaged µ(¯MCj (T)) for all dimensions, and use

the variance to identify the important dimensions in the relevant

temporal windows. Formally, we define dCAMCj (T) as follows.

Definition 3. For a data series T and class Ci , dCAMCj (T) is:

dCAMCj (T) =

©­­­­«
σ 2(¯M0

Cj
(T)t

0
) ∗ µ(¯MCj (T)t0) ... σ 2(¯M0

Cj
(T)tn) ∗ µ(¯MCj (T)tn)

: ... :

σ 2(¯MD−2

Cj
(T)t

0
) ∗ µ(¯MCj (T)t0) ... σ 2(¯MD−2

Cj
(T)tn) ∗ µ(¯MCj (T)tn)

σ 2(¯MD−1

Cj
(T)t

0
) ∗ µ(¯MCj (T)t0) ... σ 2(¯MD−1

Cj
(T)tn) ∗ µ(¯MCj (T)tn)

ª®®®®¬
(4)

4.5 Time Complexity Analysis
[Training step]: CNN/ResNet/InceptionTime requireO(ℓ∗ |T | ∗D)
computations per kernel, while dCNN/dResNet/dInceptionTime

require O(ℓ ∗ |T | ∗ D2) computations per kernel. Thus, the training

time per epoch is higher for dCNN than CNN. However, given that

the size of the input of dCNN is larger (containing D permutations

of a single series) than CNN, the number of epochs to reach con-

vergence is lower for dCNN when compared to CNN. Intuitively,

dCNN trains on more data during a single epoch. This leads to

similar overall training times (see Section 5.7).

[dCAM step]: The CAM computation complexity isO(|T | ∗D ∗nf),
where nf is the number of filters in the last convolutional layer. Let

Nf = [nf1 , ...,nfn] be the number of filters of the n convolutional

layers. Then, a forward pass has time complexity O(ℓ ∗ |T | ∗ D2 ∗∑
nfi ∈Nf

nfi). In dCAM, we evaluate k different permutations. Thus,

the overall dCAM complexity is O(k ∗ ℓ ∗ |T | ∗ D2 ∗
∑
nfi ∈Nf

nfi).

Observe that since the k permutations can be computed in parallel,

the most important parameter for the execution time is D.

4.6 Further Observations
Wenote that since in real use cases, labels are not available, the num-

ber of correctly classified permutations (called nд) could be used as

a proxy to assess the quality of the explanation (see Section 5.6).

Moreover, when analyzing sets of series, we can use dCAM on

each one independently, and then aggregate the dCAM results to

identify global discriminant features (see Section 5.8).

5 EXPERIMENTAL EVALUATION
5.1 Experimental Setup
We implemented our algorithms in Python 3.5 using the PyTorch

library [48]. The evaluation was conducted on a server with Intel

Core i7-8750H CPU 2.20GHz x 12, with 31.3GB RAM, and Quadro

P1000/PCle/SSE2 GPU with 4.2GB RAM, and on Jean Zay cluster

with Nvidia Tesla V100 SXM2 GPU with 32 GB RAM.

Our code and datasets are available online [1].

5.1.1 Datasets. We conduct our experimental evaluation using

real datasets from the UCR/UEA archive [12] to evaluate the classifi-

cation performance of the competing methods. The real datasets are

injected with known discriminant patterns and a real use case from

the medical domain to evaluate the discriminant features identifica-

tion. We use the StarLightCurves (classes 2 and 3 only), ShapesAll

(classes 1 and 2 only), and Fish (class 1 and 2 only) datasets from

the UCR archive [12], in which we inject subsequences that will

generate discriminant features. We build two types of datasets to

study the ability of the algorithms to identify the discriminant pat-

terns guiding the classification decision, (1) when these patterns

occur in a subset of the dimensions at different timestamps, and

(2) when these patterns occur in a subset of the dimensions at the

same timestamp.

(1) For the Type 1 datasets, we build each dimension of Class 1

by concatenating random instances from one class of one of our

two UCR seed datasets. We build Class 2 by injecting in the series

of the other class of our two UCR datasets a pattern in 2 random

dimensions at a random position in the series.

(2) For the Type 2 datasets, we build each dimension of Class 1

by concatenating random instances from one of the classes of our

two UCR datasets and injecting patterns from the other class in x
random dimensions and at different positions. We build Class 2 by

injecting patterns at the same positions of 2 random dimensions.

Examples of Type 1 and Type 2 5-dimensional datasets based on

StarLightCurves are depicted in Figures 7(a), and 7(b), respectively;

we use 1000 such datasets. In addition, we consider a use case from

medicine related to robot-assisted surgeon training (Section 5.8).

5.1.2 Evaluation Measures. We first evaluate the classification

accuracy, C-acc . This measure corresponds to the ratio of correctly

classified instances among all instances in the test dataset.

We then evaluate the discriminant features accuracy, Dr -acc ,
for Class 1 (see Figure 7). We define Dr -acc as the PR-AUC for

CAM/cCAM/dCAM obtained from the models and the ground-

truth. The ground-truth is a series that has 1 at the positions of

discriminant features (see Figure 7(a.2): ground-truth contains 1 at

the positions of the injected patterns, marked with the red rectan-

gles, and 0 otherwise). We motivate the choice of PR-AUC (instead

of ROC-AUC) because we are more interested in measuring the

accuracy of identifying the injected patterns (representing at max

0.02 percent of the dataset) than measuring the accuracy of not

detecting the non-injected patterns. In this very unbalanced case,

PR-AUC is more appropriate than ROC AUC [13].

Note that even thoughwe annotate each point of the injected sub-

sequences as discriminant, only some subparts of these sequences

may be discriminant, thus, leading to Dr -acc less than 1. Finally,

for CNN/ResNet/InceptionTime, we compute the Dr -acc scores by

assuming that their (univariate) CAM values are the same for all

dimensions. We mark their Dr -acc scores with a star in Table 2.

5.2 Baselines and Training Setup
We compare our model, dCNN/dResNet/dInceptionTime, to the

classical CNN/ResNet/InceptionTime model [26–28, 65], and the

cCNN/cResNet/cInceptionTime baseline we introduced in Section 2.

We are using the same architecture setup for all models. We then use

CAM for CNN, ResNet, InceptionTime, cCAM for cCNN, cResNet

and cInceptionTime and dCAM for dCNN, dResNet and dInception-

Time to identify discriminant features. For CNN, cCNN and dCNN,

we are using 5 convolutional layers with (64, 128, 256, 256, 256) fil-

ters respectively. We are using a kernel size of 3 and a padding of

2. For ResNet, cResNet, and dResNet, we are using three blocks

with three convolutional layers of 64 filters (for the first two blocks)

and 128 layers (for the last block). We are using kernel sizes equal

to 8, 5, and 3 for each block for the three layers of the block. For

InceptionTime, cInceptionTime and dInceptionTime, we are using

the same architecture as originally defined [28].

We also include MTEX-CNN [2](MTEX) as a baseline, represen-

tative of other kinds of architectures that can provide a multivariate

CAM. The explanation is computed separately for discriminant fea-

tures and timestamps using grad-CAM [57] (MTEX-grad). The latter

is a variant of the usual CAM using the gradients of the weights

instead of the GAP layer to compute the activation.

We finally include three recurrent neural networks: the usual Re-

current Neural Network [53] (RNN), Long-Short TermMemory [23]

(LSTM), and Gated Recurrent Unit [10] (GRU) to our benchmark.

As following previous evaluation work conducted in the UCR/UEA

archive [60], we use for all networks one recurrent hidden layer

(RNN, LSTM, and GRU respectively) of 128 neurons. We then add

one dense layer connecting the 128 neurons to the classes neurons.

We split our dataset into training and validation sets with 80

and 20 percent of the total dataset, respectively (equally balanced

between the two classes). The training dataset is used to train the

model, and the validation dataset is used as a validation dataset

during the training phase. We generate a fully new test dataset

for synthetic datasets and evaluate C-acc and Dr -acc . We train all

models with a learning rate α = 0.00001, a maximum batch size of

16 instances (less if GPU memory cannot fit 16 instances), and a

maximal number of epochs equal to 1000 (we use early stopping

and stop before 1000 epochs if the model starts overfitting the test

dataset). For dCAM, we use k = 100 (number of random permuta-

tions), a value that we empirically verified (due to lack of space, a

detailed analysis of the effect of k is in the full version of the paper).

5.3 Classification Accuracy evaluation
We first evaluate the classification performance of our proposed

approaches (denoted as c-Baselines and d-Baselines in Table 2) and

the different baselines (denoted as Baselines in Table 2) over the

UCR/UEA multivariate data series. We run each method ten times

and report the average C-acc .
We first observe that the recurrent models (RNN, GRU, LSTM)

are less accurate by approximately 0.10 than CNN-based models

(CNN, ResNet and InceptionTime). These results confirm the ob-

servations of previous works [26, 27, 52, 65]. We then observe that

7

𝑎. 2 𝐶𝑙𝑎𝑠𝑠 2 (2 injected patterns, different timestamps)𝑎. 1 𝐶𝑙𝑎𝑠𝑠 1 (no injected patterns) 𝑏. 1 𝐶𝑙𝑎𝑠𝑠 1 (2 injected patterns, different timestamps) 𝑏. 2 𝐶𝑙𝑎𝑠𝑠 2 (2 injected patterns, same timestamp)

𝑎 𝑆𝑦𝑛𝑡ℎ𝑒𝑡𝑖𝑐 𝑑𝑎𝑡𝑎𝑠𝑒𝑡 𝑻𝒚𝒑𝒆 𝟏 𝑑𝑖𝑠𝑐𝑟𝑖𝑚𝑖𝑛𝑎𝑛𝑡 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠:
subsequences of interest (in red) occur in a subset of dimensions at different timestamps.

𝑏 𝑆𝑦𝑛𝑡ℎ𝑒𝑡𝑖𝑐 𝑑𝑎𝑡𝑎𝑠𝑒𝑡 𝑻𝒚𝒑𝒆 𝟐 𝑑𝑖𝑠𝑐𝑟𝑖𝑚𝑖𝑛𝑎𝑛𝑡 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠:
subsequences of interest (in red) occur in a subset of dimensions at the same timestamp.

𝑖! 𝑖" 𝑖#$" 𝑖#… 𝑖! 𝑖" 𝑖#$" 𝑖#… 𝑖! 𝑖" 𝑖#$" 𝑖#… 𝑖! 𝑖" 𝑖#$" 𝑖#…

𝑑"
𝑑%
𝑑&
𝑑'

𝑑(

𝑑"
𝑑%
𝑑&
𝑑'

𝑑(

𝑑"
𝑑%
𝑑&
𝑑'

𝑑(

Figure 7: Synthetic datasets: (a) Type 1, in which the discriminant subsequence is two injected patterns from class 2
StarLightCurves dataset in random dimensions at random positions, (b) Type 2, in which the discriminant factor is the fact
that the two injected patterns are injected at the same position.

Metadata C-acc (averaged on 10 runs)
Baselines c-Baselines d-Baselines

Datasets name |C| |T | D RNN GRU LSTM MTEX CNN ResNet InceptionT. cCNN cResNet cInceptionT. dCNN dResNet dInceptionT.

AtrialFibrillation 3 640 2 0.66 0.70 0.66 0.72 0.41 0.40 0.64 0.56 0.53 0.68 0.49 0.45 0.61

Libras 15 45 2 0.86 0.84 0.75 0.93 0.96 0.96 0.82 0.80 0.82 0.65 0.91 0.94 0.66

BasicMotions 4 100 2 0.68 0.87 0.83 0.91 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
RacketSports 4 30 6 0.70 0.78 0.75 0.81 0.94 0.99 0.90 0.95 0.98 0.85 0.94 0.98 0.92

Epilepsy 4 206 3 0.63 0.83 0.83 0.97 1.00 1.00 0.97 1.00 1.00 1.00 1.00 1.00 0.99

StandWalkJump 3 2500 4 0.60 0.80 0.90 0.66 0.70 0.66 0.65 0.83 1.00 0.81 0.95 1.00 0.75

UWaveGest.Lib. 8 315 3 0.88 0.93 0.88 0.93 0.88 0.89 0.89 0.76 0.74 0.64 0.84 0.89 0.83

Handwriting 26 152 3 0.45 0.43 0.40 0.34 0.83 0.90 0.55 0.42 0.70 0.38 0.76 0.89 0.52

NATOPS 6 51 24 0.87 0.91 0.82 0.91 0.99 1.00 0.95 0.86 0.89 0.83 0.97 0.99 0.91

PenDigits 10 8 2 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99
FingerMovements 2 50 28 0.56 0.58 0.58 0.62 0.70 0.68 0.71 0.57 0.63 0.55 0.72 0.71 0.66

Artic.WordRec. 25 144 9 0.98 0.97 0.90 0.98 0.99 0.99 0.93 0.82 0.94 0.74 0.98 0.99 0.88

HandMov.Dir. 4 400 10 0.46 0.40 0.37 0.44 0.44 0.42 0.51 0.34 0.35 0.40 0.45 0.44 0.33

Cricket 12 1197 6 0.98 0.90 0.80 0.95 1.00 1.00 0.98 0.94 0.97 0.87 1.00 1.00 0.98

LSST 14 36 6 0.54 0.53 0.52 0.53 0.62 0.66 0.40 0.56 0.59 0.49 0.62 0.66 0.51

Eth.Concentration 4 1751 3 0.33 0.37 0.32 0.58 0.35 0.36 0.34 0.36 0.36 0.36 0.35 0.39 0.34

SelfReg.SCP1 2 896 6 0.91 0.88 0.89 0.88 0.86 0.83 0.87 0.88 0.84 0.88 0.86 0.86 0.88

SelfReg.SCP2 2 1152 7 0.58 0.57 0.60 0.58 0.59 0.58 0.62 0.60 0.59 0.59 0.57 0.60 0.63
Heartbeat 2 405 61 0.73 0.73 0.73 0.75 0.83 0.86 0.83 0.76 0.76 0.76 0.84 0.86 0.83

PhonemeSpectra 39 217 39 0.11 0.11 0.11 0.15 0.31 0.37 0.27 0.31 0.33 0.28 0.33 0.40 0.32

EigenWorms 5 17984 6 0.57 0.50 0.66 0.57 0.90 0.92 0.82 0.71 0.92 0.73 0.92 0.92 0.81

MotorImagery 2 3000 64 0.53 0.59 0.58 0.59 0.58 0.57 0.56 0.56 0.57 0.56 0.65 0.68 0.66

FaceDetection 2 62 144 0.64 0.58 0.60 0.72 0.57 0.59 0.71 0.55 0.70 0.70 0.57 0.61 0.63

Mean 0.662 0.686 0.672 0.717 0.758 0.766 0.735 0.701 0.747 0.684 0.770 0.793 0.723

Rank 8.26 7.65 8.73 6.39 4.73 4.13 6.08 7.30 5.73 7.73 4.56 2.65 6.56

Table 2: C-acc averaged accuracy for 10 runs over UCR/UEA datasets.

ResNet-based architecture performs better than CNN-based and

InceptionTime-based architectures. Moreover, we note that, over-

all, dCNN and dResNet have a better C-acc than CNN and ResNet,

respectively. This observation confirms that our proposed archi-

tectures (dResNet, dCNN) do not result in any loss in accuracy; on

the contrary, they are slightly more accurate than usual architec-

tures (ResNet, CNN). We notice that dResNet is, on average, one

rank higher than ResNet. Similar observations can be made when

comparing dCNN and CNN.

Moreover, Table 2 confirms that using cCNN baselines (or cRes-

Net and cInceptionTime) implies a drop in classification accuracy.

For instance, CNN architecture is 0.05 more accurate than cCNN

architecture. Thus, c-Baselines cannot guarantee at least equivalent
accuracy. Figure 8(a) depicts the comparison between dCNN C-acc
(on the y-axis) and CNN/cCNN C-acc (on the x-axis; CNN: blue

circles; cCNN: red crosses). The dotted line corresponds to cases

when both classifiers have the same accuracy. We observe that al-

most all cCNN C-acc (red crosses) are above the dotted line, which

shows that dCNN is more accurate for most datasets. Similarly, we

observe that most of the CNN C-acc (blue circles) are above the
dotted lines, which means that dCNN is more accurate than CNN.

The same observation can be made when examining Figure 8(b), in

which dResNet is compared with ResNet and cResNet.

However, the same observation is not true when comparing dIn-

ceptionTime with InceptionTime and cInceptionTime. Even though

in Figure 8(c) most of the red crosses are above the dotted line,

indicating that dInceptionTime is most of the time more accurate

than cInceptionTime, the blue circles are equally distributed above

and under the dotted line. Thus, dInceptionTime is not more accu-

rate than InceptionTime. The results in Table 2 also show that the

averaged C-acc across all datasets (as well as the averaged rank)

is lower for dInceptionTime than for InceptionTime. Nevertheless,

the performance of dInceptionTime is very close to that of Incep-

tionTime. Thus, transforming the original architecture into one

that supports dCAM does not penalize classification performance.

Finally, we observe that the accuracy of MTEX-CNN is lower

than that of Baselines and the d-Baselines. We note that MTEX-CNN

and cCNN have very similar performance (average accuracy of 0.71

and 0.70, and average rankings of 6.39 and 7.30). As we explained

earlier (see Section 2.3), the MTEX-CNN architecture is divided

into two blocks. The experiments demonstrate that the 2nd block

cannot capture all discriminant features, and thus, cannot reach

the accuracy of a traditional CNN. We conclude that MTEX-CNN

is not as accurate as traditional architectures (such as CNN) or our

proposed architectures (such as dCNN).

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 0.5 1

40

𝒅𝑪𝑵𝑵 𝑏𝑒𝑡𝑡𝑒𝑟

𝑪𝑵𝑵 𝑏𝑒𝑡𝑡𝑒𝑟
𝒄𝑪𝑵𝑵 𝑏𝑒𝑡𝑡𝑒𝑟
𝑴𝑻𝑬𝑿 𝑏𝑒𝑡𝑡𝑒𝑟

𝒅𝑹𝒆𝒔𝑵𝒆𝒕 𝑏𝑒𝑡𝑡𝑒𝑟

𝑹𝒆𝒔𝑵𝒆𝒕 𝑏𝑒𝑡𝑡𝑒𝑟
𝒄𝑹𝒆𝒔𝑵𝒆𝒕 𝑏𝑒𝑡𝑡𝑒𝑟
𝑴𝑻𝑬𝑿 𝑏𝑒𝑡𝑡𝑒𝑟

𝒅𝑰𝒏𝒄𝒆𝒑𝒕𝒊𝒐𝒏𝑻𝒊𝒎𝒆
𝑏𝑒𝑡𝑡𝑒𝑟

𝑰𝒏𝒄𝒆𝒑𝒕𝒊𝒐𝒏𝑻𝒊𝒎𝒆 𝑏𝑒𝑡𝑡𝑒𝑟
𝒄𝑰𝒏𝒄𝒆𝒑𝒕𝒊𝒐𝒏𝑻𝒊𝒎𝒆 𝑏𝑒𝑡𝑡𝑒𝑟

𝑴𝑻𝑬𝑿 𝑏𝑒𝑡𝑡𝑒𝑟

𝐼𝑛𝑐𝑒𝑝𝑡𝑖𝑜𝑛𝑇𝑖𝑚𝑒/𝑐𝐼𝑛𝑐𝑒𝑝𝑡𝑖𝑜𝑛𝑇𝑖𝑚𝑒
/𝑀𝑇𝐸𝑋 𝐶-𝑎𝑐𝑐

𝑅𝑒𝑠𝑁𝑒𝑡/𝑐𝑅𝑒𝑠𝑁𝑒𝑡
/𝑀𝑇𝐸𝑋 𝐶-𝑎𝑐𝑐

𝐶𝑁𝑁/𝑐𝐶𝑁𝑁
/𝑀𝑇𝐸𝑋 𝐶-𝑎𝑐𝑐

𝑑𝐶
𝑁
𝑁
𝐶-
𝑎𝑐
𝑐

𝑑𝑅
𝑒𝑠
𝑁
𝑒𝑡
𝐶-
𝑎𝑐
𝑐

𝑑𝐼
𝑛𝑐
𝑒𝑝
𝑡𝑖
𝑜𝑛
𝑇𝑖
𝑚
𝑒
𝐶-
𝑎𝑐
𝑐

dCNN/CNN (),
dCNN/cCNN (),
dCNN/MTEX ()

(a)

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 0.5 1
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 0.5 1

dResNet/ResNet (),
dResNet/cResNet (),
dResNet/MTEX ()

(b)
dInceptionTime/InceptionTime (),
dInceptionTime / cInceptionTime (),
d InceptionTime /MTEX ()

(b)

Figure 8:C-acc comparison of (a) dCNNwith cCNN, CNN and
MTEX, (b) dResNet with cResNet, ResNet and and MTEX,
and (c) dInceptionTime with cInceptionTime, Inception-
Time and MTEX on UCR/UEA datasets.

𝑎 𝑎𝑣𝑒𝑟𝑎𝑔𝑒𝑑 𝑪-𝒂𝒄𝒄 𝑜𝑛 𝑠𝑦𝑛𝑡ℎ𝑒𝑡𝑖𝑐 𝑑𝑎𝑡𝑎𝑠𝑒𝑡𝑠 𝑏 𝑎𝑣𝑒𝑟𝑎𝑔𝑒𝑑 𝑫𝒓-𝒂𝒄𝒄 𝑜𝑛 𝑠𝑦𝑛𝑡ℎ𝑒𝑡𝑖𝑐 𝑑𝑎𝑡𝑎𝑠𝑒𝑡𝑠

1
𝑻𝒚𝒑𝒆

𝟏
𝑠𝑦𝑛𝑡ℎ𝑒𝑡𝑖𝑐

𝑑𝑎𝑡𝑎𝑠𝑒𝑡𝑠
2

𝑻𝒚𝒑𝒆
𝟐

𝑠𝑦𝑛𝑡ℎ𝑒𝑡𝑖𝑐
𝑑𝑎𝑡𝑎𝑠𝑒𝑡𝑠

3
𝑻𝒚𝒑𝒆

𝟏
𝑎𝑛𝑑

𝑻𝒚𝒑𝒆
𝟐

𝑠𝑦𝑛𝑡ℎ𝑒𝑡𝑖𝑐
𝑑𝑎𝑡𝑎𝑠𝑒𝑡𝑠

𝑎.
1
𝐶-
𝑎𝑐
𝑐(
𝑇𝑦
𝑝𝑒
1)

𝑎.
2
𝐶-
𝑎𝑐
𝑐(
𝑇𝑦
𝑝𝑒
2)

𝑏.
3
𝐹(
𝑇𝑦
𝑝𝑒
1,
𝑇𝑦
𝑝𝑒
2)

𝑏.
1
𝐷𝑟
-𝑎
𝑐𝑐
(𝑇
𝑦𝑝
𝑒
1)

𝑏.
2
𝐷𝑟
-𝑎
𝑐𝑐
(𝑇
𝑦𝑝
𝑒
2)

𝑏.
3
𝐹(
𝑇𝑦
𝑝𝑒
1,
𝑇𝑦
𝑝𝑒
2)

0.5

0.6

0.7

0.8

0.9

1

10 30 50 70 90
Number of dimensions

0.5

0.6

0.7

0.8

0.9

1

10 30 50 70 90
Number of dimensions

0.5

0.6

0.7

0.8

0.9

1

10 30 50 70 90
Number of dimensions

0 .50 .7
0 .9

1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 0 1 00

Ac
cu

ra
cy

Number of dimensions

ResNet cResNet dCNN dResNet dInception MTEX

7 0 8 0 9 0 1 00

dInception MTEX

0

0.2

0.4

0.6

0.8

1

10 30 50 70 90
Number of dimensions

0
0.1
0.2
0.3
0.4
0.5
0.6

10 30 50 70 90
Number of dimensions

0

0.2

0.4

0.6

10 30 50 70 90
Number of dimensions

Figure 9: Evaluation of influence of number of dimensions
on our approaches and the baselines C-acc and Dr -acc.

5.4 Discriminant Features Identification
We now evaluate the classification accuracy (C-acc) and the dis-

criminant features identification accuracy (Dr -acc) on synthetically

built datasets. Table 3 depicts bothC-acc and Dr -acc onType 1 and

2 datasets, when varying the number of dimensions from 10 to 100.

In this experiment, we keep as baselines only ResNet and cResNet,

which are the most accurate methods among all other baselines.

Overall, all methods have better performance (both C-acc and
Dr -acc) on Type 1 datasets than on Type 2. This was expected:

discriminant features located in single dimensions are easier to find

than discriminant features that depend on several dimensions.

We then notice that for low dimensional (D=10) datasets, ResNet,
dResNet, dCNN, and dInceptionTime are performing nearly per-

fect C-acc. Moreover, ResNet and MTEX-CNN are performing well

for low-dimensional data series but start to fail for a more signifi-

cant number of dimensions. While the drop is already significant

for the Type 1 dataset built from the StarLightCurve dataset, it is

even stronger forType 2 datasets, for which ResNet fails to classify

instances with a number of dimensions D ≥ 20. On the contrary,

dCNN, dResNet, and dInceptionTime, which use the random permu-

tations in the input, are not sensitive to the number of dimensions

and have an almost perfect C-acc for most of Type 1 datasets. We

observe a C-acc drop for dCNN, dResNet and dInceptionTime as

dimensions increase for Type 2 datasets. However, this drop is sig-

nificantly less pronounced than that of ResNet. Overall, dCNN,

dResNet, and dInceptionTime, which have on average the three

highest ranks, are the most accurate methods.

Regarding cResNet, although it achieves a nearly perfect C-acc
for Type 1 datasets, we observe that it fails to classify correctly

instances of Type 2 datasets. As explained in Section 2, the input

data structure is not rich enough to allow comparisons among

dimensions, which is the main way to find discriminant features

between the two classes of Type 2 datasets. We also observe that

MTEX-CNN fails to classify instances ofType 2 datasets. Thus, this

architecture does not correctly detect the discriminant features

across different dimensions. Overall, Figure 9(a) shows that dCNN,

dResNet and dInceptionTime are equivalent to cResNet for Type
1 (Figure 9(a.1)), outperforming all the baselines for Type 2 (Fig-

ure 9(a.2)), and in general are better than the baselines (ResNet

and cResNet) for both types (Figure 9(a.3) with F (Type 1,Type 2) =
2∗C-acc(Type 1)∗C-acc(Type 2)

C-acc(Type 1)+C-acc(Type 2)
).

We now compare the different methods using the Dr -acc mea-

sure. We observe that the baseline cCAM (computed with cCNN) is

outperforming CAM (computed with ResNet) and dCAM (with all

of dCNN, dResNet and dInceptionTime) forType 1 datasets. This is

explained by the fact that these classes can be discriminated by treat-

ing dimensions independently. Thus, cCAM (with no comparisons

between dimensions) is naturally the best solution. Nevertheless, as

Type 2 datasets require comparisons among dimensions to discrim-

inate the classes, cCAM fails on them, with a Dr -acc very similar

to the one of a random classifier. This confirms that such a baseline

cannot be considered as a general solution for multivariate data

series classification. We also observe that Dr -acc of the explanation
method of MTEX-CNN (MTEX-grad) is lower than dCAM for Type
1 and close to Dr -acc of cCAM for Type 2, meaning that it cannot

identify discriminant features of Type 2 datasets.

We then compare CAM and dCAM (used with dCNN/dResNet/

dInceptionTime). Figure 9(b) shows that dCAM significantly outper-

forms CAM, and that Dr -acc reduces for all models as the number

of dimensions increases. Nevertheless,Dr -acc of dCAM remains rel-

atively high for bothType 1 (Figure 9(b.1)) andType 2 (Figure 9(b.2))

datasets (for less than 60 dimensions).

This result demonstrates the superiority of dCAM over state-of-

the-art methods. Besides, the average ranks in Table 3indicate that

dCAM computed from ResNet has the highest rank of 2.15.

5.5 Influence of k
This section analyzes the influence of the number of permutations

k on the discriminative features identification accuracy (Dr -acc).
We compute the Dr -acc for 20 different instances for which dCAM

is computed using a value of k between 1 and 400. We randomly

select the 20 instances from the 9 ShapesAll datasets, Type 1 and

Type 2. (We excluded theType 2 ShapesAll dataset with 100 dimen-

sions, because no model trained on this dataset leads to reasonably

accurate results: see Table 3.) Figure 10(a.1) for Type 1 datasets

and (a.2) for Type 2 datasets depicts the evolution of Dr -acc (on
average for the 20 instances) as k increases, for dCNN, dResNet

and dInception Time. The results show that the model architecture

Datasets C-acc (averaged on 10 runs) Dr -acc (averaged on 50 instances)
MTEX-grad CAM cCAM dCAM

Dataset name Type Dimensions MTEX ResNet cResNet dCNN dResNet dInception MTEX ResNet cResNet dCNN dResNet dInception Random

StarLightCurve

Type 1

10 0.99 0.95 1.00 1.00 1.00 1.00 0.40 0.07* 0.92 0.46 0.38 0.21 0.02

20 0.99 0.71 1.00 1.00 1.00 0.98 0.38 0.02* 0.92 0.38 0.45 0.36 0.01

40 0.98 0.60 1.00 0.99 1.00 0.93 0.24 0.008* 0.94 0.28 0.42 0.39 0.005

60 0.61 0.57 1.00 0.98 0.99 0.91 0.05 0.004* 0.92 0.23 0.24 0.13 0.003

100 0.55 0.64 1.00 0.96 0.97 0.79 0.01 0.003* 0.92 0.2 0.26 0.10 0.002

Type 2

10 0.58 0.71 0.53 1.00 1.00 0.93 0.15 0.0256* 0.025 0.26 0.43 0.10 0.021

20 0.55 0.61 0.55 0.98 1.00 0.70 0.04 0.016* 0.01 0.28 0.43 0.05 0.01

40 0.56 0.58 0.51 0.88 0.58 0.56 0.07 0.0068* 0.006 0.20 0.05 0.03 0.005

60 0.53 0.55 0.53 0.64 0.59 0.55 0.008 0.0058* 0.005 0.01 0.003 0.009 0.003

100 0.52 0.59 0.5 0.59 0.56 0.60 0.01 0.0024* 0.002 0.003 0.004 0.02 0.002

ShapesAll

Type 1

10 1.00 1.00 1.00 1.00 1.00 1.00 0.60 0.09* 0.79 0.66 0.7 0.55 0.02

20 1.00 0.86 1.00 1.00 1.00 0.99 0.31 0.03* 0.74 0.56 0.66 0.51 0.011

40 0.85 0.65 1.00 1.00 1.00 1.00 0.20 0.008* 0.88 0.45 0.74 0.76 0.005

60 0.83 0.65 1.00 1.00 1.00 0.96 0.50 0.005* 0.65 0.44 0.72 0.79 0.003

100 0.70 0.57 1.00 0.98 1.00 0.85 0.002 0.003* 0.83 0.31 0.49 0.48 0.002

Type 2

10 0.60 0.82 0.54 1.00 1.00 0.93 0.02 0.0467* 0.04 0.63 0.50 0.32 0.02

20 0.54 0.57 0.52 1.00 1.00 0.89 0.04 0.0132* 0.013 0.50 0.73 0.40 0.01

40 0.59 0.60 0.52 0.90 0.72 0.73 0.02 0.005* 0.005 0.40 0.20 0.36 0.005

60 0.57 0.59 0.51 0.65 0.61 0.72 0.06 0.0037* 0.003 0.22 0.34 0.46 0.003

100 0.52 0.59 0.50 0.55 0.58 0.55 0.04 0.0027* 0.002 0.005 0.02 0.05 0.002

Rank 3.95 3.9 3 1.65 1.6 2.85 3.85 4.45 3 2.6 2.15 2.75

Table 3: C-acc and Dr -acc averaged accuracy for 10 runs over synthetic datasets.

0

100

200

300

10 20 40 60 100
Number of dimensions

dCNN dResNet dInception

0

50

100

150

200

10 20 40 60
Number of dimensions

dCNN dResNet dInception

N
um

be
r o

f
pe

rm
ut

at
io

ns
 k

N
um

be
r o

f
pe

rm
ut

at
io

ns
 k

(a) Dr-acc (normalized between 0 and 1) for ShapesAll datasets
(a.1) Type 1 (a.2) Type 2

(b.1) Type 1 (b.2) Type 2
(b) Number of permutations k to reach 90% of Dr-acc maximum

D=10
D=20
D=40
D=60
D=100

D=10
D=20
D=40
D=60
D=100

D=10
D=20
D=40
D=60
D=100

D=10
D=20
D=40
D=60

D=10
D=20
D=40
D=60

D=10
D=20
D=40
D=60

Figure 10: Influence of k on Dr -acc for ShapesAll datasets.

influences convergence speed, and that convergence speed reduces

as the number of dimensions increases. Figure 10(b) shows that

the number of permutations needed to reach 90 percents of the

best Dr -acc is greater when D is higher. The latter holds for Type
1 (Figure 10(b.1)) and Type 2 datasets (Figure 10(b.2)). Overall, we

notice that the dCAM computation with dResNet and dInception-

Time converges faster than dCNN. Studying deep neural network

architectures that could reduce the number of permutations needed

to reach the maximum Dr -acc is an open research problem.

5.6 C-acc versus Dr -acc
In this section, we first analyze the relation between C-acc and

Dr -acc . We then evaluate the impact that C-acc has on the number

of permutations that have been correctly classified nд . We finally

evaluate the impact that nд has on Dr -acc .

40

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8
0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8
0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8
0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8
0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8

0

0.2

0.4

0.6

0.8

1

0.5 0.7 0.9
0

0.2

0.4

0.6

0.8

1

0.5 0.7 0.9
0

0.2

0.4

0.6

0.8

1

0.5 0.7 0.9

𝐷𝑟-𝑎𝑐𝑐

𝐶-
𝑎𝑐
𝑐

𝐷𝑟-𝑎𝑐𝑐

𝐶-
𝑎𝑐
𝑐

𝐷𝑟-𝑎𝑐𝑐

𝐶-
𝑎𝑐
𝑐

𝐷𝑟-𝑎𝑐𝑐 𝐷𝑟-𝑎𝑐𝑐 𝐷𝑟-𝑎𝑐𝑐

𝐶-𝑎𝑐𝑐 𝐶-𝑎𝑐𝑐 𝐶-𝑎𝑐𝑐

𝑛!
𝑘

𝑛!
𝑘

𝑛!
𝑘

𝑛!
𝑘

𝑛!
𝑘

𝑛!
𝑘

𝑐 𝒅𝑰𝒏𝒄𝒆𝒑𝒕𝒊𝒐𝒏𝑻𝒊𝒎𝒆𝑏 𝒅𝑹𝒆𝒔𝑵𝒆𝒕𝑎 𝒅𝑪𝑵𝑵 1
𝑪-𝒂𝒄𝒄

𝑣𝑒𝑟𝑢𝑠
𝑫
𝒓-𝒂𝒄𝒄

2
𝒏
𝒈𝒌
𝑣𝑒𝑟𝑢𝑠

𝑫
𝒓-𝒂𝒄𝒄

3
𝒏
𝒈𝒌
𝑣𝑒𝑟𝑢𝑠

𝑪-𝒂𝒄𝒄

Figure 11: Evaluation of C-acc, Dr -acc, and ratio between
number of permutations k and number of permutations cor-
rectly classified nд , for dCNN, dResNet and dInceptionTime.

Figure 11(1) depicts the relation between C-acc and Dr -acc for
dCNN (Figure 11(a.1)), dResNet (Figure 11(b.1)) and dInceptionTime

(Figure 11(c.1)) for all synthetic datasets. Note that all methods have

a logarithmic relation (dotted red line) between Dr -acc (x-axis) and
C-acc (y-axis). This confirms that the accuracy of the trained model

has a significant impact on discriminant feature identification.

Figure 11(3) depicts on the y-axis the ratio of correctly classified

permutations (nд) among all permutations (k) versus the C-acc (on
the x-axis). In this case, for all of dCNN (Figure 11(a.3)), dResNet

(Figure 11(b.3)) and dInceptionTime (Figure 11(c.3)), we observe that

there exists a linear relationship for C-acc between 0.7 and 1. This

means that nд will be greater when the model is more accurate.

Nevertheless, for C-acc between 0.5 and 0.7, we observe a high

variance for nд/k . Thus, an inaccurate model may still lead to a

high nд . Finally, Figure 11(2) depicts the relation between nд/k
(on the y-axis) and Dr -acc (on the x-axis). We observe a similar

relationship betweenC-acc and Dr -acc , which means that a low nд
may lead to inaccurate discriminant features identification.

0.6

6

60

10 100 1000 10000
0.7

7

10 30 50 70 90

0

100

200

300

10 60
0

20
40
60
80

100

10 5010
0

50

100

0 500 1000

𝑇𝑖
𝑚
𝑒
(𝑠
)

𝑇𝑖
𝑚
𝑒
(𝑠
)

𝑇𝑖
𝑚
𝑒
(𝑠
)

𝑇𝑖
𝑚
𝑒
(𝑠
)

𝑇𝑖
𝑚
𝑒
(𝑠
)

𝑏. 1 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑠 𝑏. 2 𝐷𝑎𝑡𝑎 𝑠𝑒𝑟𝑖𝑒𝑠 𝑙𝑒𝑛𝑔𝑡ℎ 𝑏. 3 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑒𝑟𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛𝑠 𝑘

𝑏 𝑑𝐶𝐴𝑀 𝑐𝑜𝑚𝑝𝑢𝑡𝑎𝑡𝑖𝑜𝑛 (𝑓𝑜𝑟 𝑑𝐶𝑁𝑁, 𝑑𝑅𝑒𝑠𝑁𝑒𝑡 𝑎𝑛𝑑 𝑑𝐼𝑛𝑐𝑒𝑝𝑡𝑖𝑜𝑛𝑇𝑖𝑚𝑒)
𝑎. 1 𝐷𝑎𝑡𝑎 𝑠𝑒𝑟𝑖𝑒𝑠 𝑙𝑒𝑛𝑔𝑡ℎ 𝑎. 2 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑠

1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 0 1 00

ResNet cResNet dCNN dResNet dIncep tion CNN InceptionTime cCNN cInceptio nTime MTEX

𝑎 𝑇𝑟𝑎𝑖𝑛𝑖𝑛𝑔 𝑐𝑜𝑚𝑝𝑢𝑡𝑎𝑡𝑖𝑜𝑛 (𝑒𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒 𝑓𝑜𝑟 1 𝑒𝑝𝑜𝑐ℎ)

1

10

100

1000

10000

MTEX CNN cCNN dCNN
1

10

100

1000

10000

ResNet cResNet dResNet

1

10

100

1000

10000

MTEX CNN cCNN dCNN
1

10

100

1000

10000

100000

ResNet cResNet dResNet

1

10

100

1000

InceptionT. cInceptionT. dI ncepti onT.

1

10

100

1000

10000

InceptionT. cInceptionT. dI ncepti onT.

104

103

102

101

100

103

102

101

100

InceptionT. cInceptionT. dInceptionT.

10 20 40 60 100Number of dimensions:

104

103

102

101

100

104

103

102

101

100

𝑒𝑝
𝑜𝑐
ℎ𝑠

𝑒𝑝
𝑜𝑐
ℎ𝑠

𝑇𝑖
𝑚
𝑒
(𝑠
)

𝑇𝑖
𝑚
𝑒
(𝑠
)

𝑐 𝑇𝑟𝑎𝑖𝑛𝑖𝑛𝑔 𝑐𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑛𝑐𝑒: 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑒𝑝𝑜𝑐ℎ𝑠 𝑎𝑛𝑑 𝑒𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒 𝑡𝑜 𝑟𝑒𝑎𝑐ℎ 90% 𝑜𝑓 𝑏𝑒𝑠𝑡 𝑙𝑜𝑠𝑠

105

104

103

102

101

100

𝑇𝑖
𝑚
𝑒
(𝑠
)

104

103

102

101

100

𝑒𝑝
𝑜𝑐
ℎ𝑠

InceptionT. cInceptionT. dInceptionT.

under/overfitting

Figure 12: Execution time (seconds) for (a) training computa-
tions when we vary (a.1) data series length and (a.2) number
of dimensions. (b) Execution time for dCAM computation
when we vary (b.1) number of dimensions, (b.2) data series
length, (b.3) number of permutations k , (c) training time to
reach convergence (90% of the best loss).

As hypothesized in Section 4, the experimental results confirm

that an inaccurate model (for all of dCNN, dResNet, and dInception-

Time) cannot be used to identify discriminant features. Moreover,

since in a real use-case it is not possible to measure Dr -acc , we
can use nд/k to estimate the discriminant feature identification

accuracy. Even though Figure 11(2) demonstrates that a high nд/k
does not always lead to a high Dr -acc , in practice, we can safely

assume that a low nд/k will most probably correspond to a low

Dr -acc . Therefore, such measure can be used as a proxy for the

estimation of the explanation quality.

5.7 Execution time evaluation
In this section, we evaluate the execution time of our proposed

approaches and the baselines. Figure 12(a) depicts the training exe-

cution time (for one epoch) when we vary the data series length

with a constant number of dimensions fixed to 10 (Figure 12(a.1)),

and when we vary the number of dimensions with a constant

data series length fixed to 100 (Figure 12(a.2)). In these two experi-

ments, we use a batch size of 4 for all models. Overall, CNN and

InceptionTime-based architectures are faster than ResNet-based ar-

chitectures, and CNN, ResNet, InceptionTime, and MTEX-CNN are

faster when the number of dimensions and the data series length is

increasing. Nevertheless, both dCNN/dResNet/dInceptionTime and

cCNN/cResNet/cInceptionTime require the same training time.

We now evaluate the execution time and the number of epochs

required to train our proposed approaches and the baselines.

Figure 12(c) depicts the time (in seconds) and the number of

epochs to reach 90% of the best loss (on the test set) for Type 1

ShapesAll datasets varying the number of dimensions between

10 and 100. We use for all models a batch size of 16. The red

dot indicates that a model is either overfitted or underfitted

(i.e., the loss for the first epoch is approximately equal to the

best loss). We observe that cCNN/cResNet/cInceptionTime and

dCNN/dResNet/dInceptionTime require the same amount of time

to be trained, but traditional baselines require more epochs than

the proposed d-methods. Thus, training time for ResNet is longer

than dResNet for D = 10 and D = 20.

Finally, we measure the execution time required to compute

dCAM (for dCNN, dResNet, and dInceptionTime), when we vary

the number of dimensions with a constant data series length fixed

to 400 (Figure 12(b.1)), when we vary the data series length with

a constant number of dimensions fixed to 10 (Figure 12(b.2)), and

when we vary the number of permutations (Figure 12(b.3)). Note

that the dCAM execution times are very similar for the three types

of architectures. Moreover, the execution time increases super-

linearly with the number of dimensions but is linear to the data

series length and the number of permutations k .

5.8 Use Case: Surgeon skills explanation
We now illustrate the applicability of our method to a real-world

use case. In this use case, we train our dCNN network on the JIG-

SAWS dataset [21] to identify novice surgeons, based on kinematic

data series when performing surgical suturing tasks (i.e., wound

stitching) using robotic arms and surgical grippers.

[Dataset] The data series are recorded from the

DaVinciSurдicalSystem. The multivariate data series are

composed of 76 dimensions (an example of multivariate data series

is depicted in Figure 13(a)). Each dimension corresponds to a sensor

(with an acquisition rate of 30 Hz). The sensors are divided into

four groups: patient-side manipulators (left and right PSMs: green

rectangle in Figure 13(a) top left), and left and right master tool

manipulators (left and right MTMs: blue rectangle in Figure 13(a)

bottom left). Each group contains 19 sensors. These sensors are: 3

variables for the Cartesian position of the manipulator, 9 variables

for the rotation matrix, 6 variables for the linear and angular

velocity of the manipulator, and 1 variable for the gripper angle.

To perform a suture, the surgeons perform different gestures (11

in total). For example, G1 refers to reaching for the needle with

the right hand, while G11 refers to dropping the suture at the end

and moving to end points. Each gesture corresponds to a specific

time segment of the dataset, involving all sensors. For example, the

dotted red rectangle in Figure 13(a) represents gesture G6: pulling

the suture with the left hand. Surgeons that reported having more

than 100 hours of experience are considered experts, surgeons with

10-100 hours are considered intermediate, and surgeons with less

than 10 hours are labeled as novices. We have 19 multivariate data

series in the novice class, denoted as CN , 10 in the intermediate, Ci ,

10 multivariate data series in the expert class, CE . More information

on this dataset can be found in [21].

[Training] For the training procedure, we use 80% of the dataset

(randomly selected from the three classes) for training. The rest 20%

of the dataset is used for validation and early stopping. Since the

(a) Suturing_B001: 76 kinematics sensors of a novice surgeon
performing a suturing task using the Da Vinci Surgical System

(b) 𝑑𝐶𝐴𝑀𝒞! (with 𝒞" the novice class) of the Suturing_B001 (deep blue for
non discriminant subsequences, and yellow for discriminant subsequences)

(c) Maximal activation per
sensor for 𝑑𝐶𝐴𝑀𝒞! of all

𝒞" instances

(d) Averaged activation per
sensor and per gesture for
𝑑𝐶𝐴𝑀𝒞! of all 𝒞" instances

time time

Maximal activation value Gestures typesG6: pulling suture with left hand

Example 𝑑𝐶𝐴𝑀𝒞! applied on Suturing_B001 Global statistics on 𝑑𝐶𝐴𝑀𝒞!of every instance in 𝒞"

MTM

(2)

(3)

(1): Master left gripper angle
(2): Slave right tooltip R_2
(3): Slave right tooltip R_9

(1)

PSM

Figure 13: Example of the result of dCAM on amultivariate data series of the JIGSAWS dataset. (a) the depicted data series cor-
responds to a novice surgeon performing a suture operation (joined with the corresponding dCAM in (b)). General statistical
results over the entire novice class CN are depicted such as (c) box-plots of the maximal activation value per sensor and (d) the
averaged activation per sensor per gesture performed.

instances do not have the same length, we use batches composed

of one instance when training the models in the GPU.

[Evaluation] Similar to what has been reported in previous

work [26], we achieve 100% accuracy on the train and test datasets

(for ten different randomly selected train and test sets). We proceed

to compute the dCAMCN for every instance of the novice class CN .

The dCAMCN of the multivariate data series named Suturinд_B001

(Figure 13(a)) is displayed in Figure 13(b). In the latter, the deep blue

color indicates low activated subsequences (i.e., non-discriminant

of belonging to the novice class CN), while the yellow color is

pointing to highly activated subsequences. First, we note that some

groups of sensors (dimensions) are more activated than others. In

Figure 13(b), the left and right "MTM gripper angles" are the most

activated sensors. Figure 13(c), which depicts the box-plot of the

maximal activated values per sensor, confirms that in the general

case, MTM gripper angles, as well as the MTM and PSM tooltip

rotation matrices (three of these sensors are highlighted in red in

Figure 13(a)), are the most discriminant sensors. On the contrary,

linear and angular speeds are not discriminant and hence cannot

explain the novice class CN .

As explained in Section 4.6, we now extract global explanations

at the scale of the dataset. We compute the dCAM for each instance,

and we then extract global statistics on the sensors, i.e., aggregated

over all instances. Figure 13(d) depicts the averaged activation per

sensor per gesture. Overall, dCAMCN identifies gesture G9 (us-

ing the right hand to help tighten the suture) as a discriminant

gesture, because of the discriminant subsequences present in the

sensors "rightMTM gripper angle", "5
th

element", and "7
th

element"

(marked with red ovals in Figure 13(d)). These three identified sen-

sors (dimensions) are relevant to the right PSM tooltip rotation

matrix and are important for the suturing process. Similarly, we

observe that gesture G6 (i.e., pulling suture with left hand) is dis-

criminant, and activated the most by the "left NTM gripper angle"

sensor. This result is consistent with a previous study [26], which

also identified gestureG6 as discriminant of belonging to the novice

class. Nevertheless, this previous study was using CAM to only

highlight the time interval corresponding to gesture G6. On the

contrary, dCAM provides more accurate (and useful) information:

it does not only identify the discriminant gesture G6, but also the

discriminant sensors. This allows the analysts to recognize exactly

what aspects of the particular gesture are problematic.

[Summary] The application of dCAM in the robot-assisted sur-

geon training use case demonstrated its effectiveness. Our approach

was able to provide meaningful explanations for the classification

decisions, based on specific gestures (subsequences), and specific

sensors (dimensions) that describe particular aspects of these ges-

tures, i.e., the positioning and rotation angles of the tip of the stitch

gripper. Such explanations can help surgeons to improve their skills.

6 CONCLUSIONS
Even though data series classification using deep learning has at-

tracted a lot of attention, existing techniques for explaining the

classification decisions fail for the case of multivariate data series.

We described a novel approach, dCAM, based on CNNs, which

detects discriminant subsequences within individual dimensions

of a multivariate data series. The experimental evaluation with

synthetic and real datasets demonstrates the superiority of our

approach.

Acknowledgments Work supported by EDF R&D and ANRT

French program, and HPC resources from GENCI-IDRIS (Grants

2020-101471 and 2021-101925), and NVIDIA Corporation for the

Titan Xp GPU donation used in this research.

REFERENCES
[1] 2022. dCAM Webpage. https://helios2.mi.parisdescartes.fr/~themisp/dCAM/

[2] Roy Assaf, Ioana Giurgiu, Frank Bagehorn, and Anika Schumann. 2019. MTEX-

CNN: Multivariate Time Series EXplanations for Predictions with Convolutional

Neural Networks. In 2019 IEEE International Conference on Data Mining (ICDM).
952–957. https://doi.org/10.1109/ICDM.2019.00106

[3] Anthony Bagnall, Jason Lines, Aaron Bostrom, James Large, and Eamonn Keogh.

2016. The great time series classification bake off: a review and experimental

evaluation of recent algorithmic advances. Data Min. Knowl. Discov. 31 (2016).
[4] Anthony Bagnall, Jason Lines, Jon Hills, and Aaron Bostrom. 2015. Time-Series

Classification with COTE: The Collective of Transformation-Based Ensembles.

IEEE TKDE 27 (2015).

[5] Anthony J. Bagnall, Richard L. Cole, Themis Palpanas, and Konstantinos Zoumpa-

tianos. 2019. Data SeriesManagement (Dagstuhl Seminar 19282). Dagstuhl Reports
9, 7 (2019), 24–39.

[6] Paul Boniol, Michele Linardi, Federico Roncallo, Themis Palpanas, Mohammed

Meftah, and Emmanuel Remy. 2021. Unsupervised and Scalable Subsequence

Anomaly Detectionin Large Data Series. VLDBJ (2021).
[7] Paul Boniol and Themis Palpanas. 2020. Series2Graph: Graph-based Subsequence

Anomaly Detection for Time Series. Proc. VLDB Endow. 13, 11 (2020), 1821–1834.
[8] Paul Boniol, John Paparrizos, Themis Palpanas, and Michael J. Franklin. 2021.

SAND: Streaming Subsequence Anomaly Detection. Proc. VLDB Endow. 14, 10
(2021), 1717–1729.

[9] Huanhuan Chen, Fengzhen Tang, Peter Tino, and Xin Yao. 2013. Model-Based

Kernel for Efficient Time Series Analysis. In ACM SIGKDD.
[10] Kyunghyun Cho, Bart van Merrienboer, Çaglar Gülçehre, Dzmitry Bahdanau,

Fethi Bougares, Holger Schwenk, and Yoshua Bengio. 2014. Learning Phrase

Representations using RNN Encoder-Decoder for Statistical Machine Translation.

In Proceedings of the 2014 Conference on Empirical Methods in Natural Language
Processing, EMNLP. ACL, 1724–1734.

[11] Zhicheng Cui, Wenlin Chen, and Yixin Chen. 2016. Multi-Scale Convolutional

Neural Networks for Time Series Classification. CoRR (2016).

[12] H. A. Dau, A. Bagnall, K. Kamgar, C. M. Yeh, Y. Zhu, S. Gharghabi, C. A. Ratanama-

hatana, and E. Keogh. 2019. The UCR time series archive. IEEE/CAA J. Automatic.
6, 6 (2019).

[13] Jesse Davis and Mark Goadrich. 2006. The Relationship between Precision-

Recall and ROC Curves. In Proceedings of the 23rd International Conference on
Machine Learning (Pittsburgh, Pennsylvania, USA) (ICML ’06). Association for

Computing Machinery, New York, NY, USA, 233–240. https://doi.org/10.1145/

1143844.1143874

[14] Angus Dempster, François Petitjean, and Geoffrey I. Webb. 2020. ROCKET: excep-

tionally fast and accurate time series classification using random convolutional

kernels. Data Min. Knowl. Discov. 34, 5 (2020), 1454–1495.
[15] Karima Echihabi, Panagiota Fatourou, Kostas Zoumbatianos, Themis Palpanas,

and Houda Benbrahim. 2022. Hercules Against Data Series Similarity Search.

PVLDB (2022).

[16] Karima Echihabi, Kostas Zoumpatianos, Themis Palpanas, and Houda Benbrahim.

2018. The Lernaean Hydra of Data Series Similarity Search: An Experimental

Evaluation of the State of the Art. Proc. VLDB Endow. 12, 2 (2018), 112–127.
[17] Karima Echihabi, Kostas Zoumpatianos, Themis Palpanas, and Houda Benbrahim.

2019. Return of the Lernaean Hydra: Experimental Evaluation of Data Series

Approximate Similarity Search. Proc. VLDB Endow. 13, 3 (2019), 403–420.
[18] Philippe Esling and Carlos Agon. 2012. Time-series data mining. CSUR (2012).

[19] Yifeng Gao and Jessica Lin. 2019. HIME: discovering variable-length motifs in

large-scale time series. Knowl. Inf. Syst. 61, 1 (2019), 513–542.
[20] Yifeng Gao, Jessica Lin, and Constantin Brif. 2020. Ensemble Grammar Induction

For Detecting Anomalies in Time Series. In Proceedings of the 23rd International
Conference on Extending Database Technology, EDBT 2020, Copenhagen, Denmark,
March 30 - April 02, 2020. OpenProceedings.org, 85–96.

[21] Yixin Gao, S. Vedula, Carol E. Reiley, N. Ahmidi, B. Varadarajan, Henry C. Lin, L.

Tao, L. Zappella, B. Béjar, D. Yuh, C. C. Chen, R. Vidal, S. Khudanpur, and Gregory

Hager. 2014. JHU-ISI Gesture and Skill Assessment Working Set (JIGSAWS) : A

Surgical Activity Dataset for Human Motion Modeling.

[22] Anna Gogolou, Theophanis Tsandilas, Karima Echihabi, Anastasia Bezerianos,

and Themis Palpanas. 2020. Data Series Progressive Similarity Search with Prob-

abilistic Quality Guarantees. In Proceedings of the 2020 International Conference
on Management of Data, SIGMOD Conference 2020, online conference [Portland,
OR, USA], June 14-19, 2020. ACM, 1857–1873.

[23] Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long Short-Term Memory.

Neural Computation 9, 8 (1997), 1735–1780.

[24] Tsung-YuHsieh, SuhangWang, Yiwei Sun, and Vasant Honavar. 2021. Explainable

Multivariate Time Series Classification: A Deep Neural Network Which Learns

to Attend to Important Variables As Well As Time Intervals. In Proceedings of
the 14th ACM International Conference on Web Search and Data Mining (Virtual

Event, Israel) (WSDM ’21). Association for Computing Machinery, New York, NY,

USA, 607–615. https://doi.org/10.1145/3437963.3441815

[25] Aya Abdelsalam Ismail, Mohamed K. Gunady, Héctor Corrada Bravo, and Soheil

Feizi. 2020. Benchmarking Deep Learning Interpretability in Time Series Predic-

tions. In Advances in Neural Information Processing Systems 33: Annual Conference
on Neural Information Processing Systems 2020, NeurIPS 2020, December 6-12, 2020,
virtual, Hugo Larochelle, Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina Bal-

can, and Hsuan-Tien Lin (Eds.). https://proceedings.neurips.cc/paper/2020/hash/

47a3893cc405396a5c30d91320572d6d-Abstract.html

[26] Hassan Ismail Fawaz, Germain Forestier, Jonathan Weber, Lhassane Idoumghar,

and Pierre-Alain Muller. 2018. Evaluating Surgical Skills from Kinematic Data

Using Convolutional Neural Networks. In MICCAI.
[27] Hassan Ismail Fawaz, Germain Forestier, Jonathan Weber, Lhassane Idoumghar,

and Pierre-Alain Muller. 2019. Deep Learning for Time Series Classification: A

Review. Data Min. Knowl. Discov. 33, 4 (2019).
[28] Hassan Ismail Fawaz, Benjamin Lucas, Germain Forestier, Charlotte Pelletier,

Daniel F. Schmidt, JonathanWeber, Geoffrey I. Webb, Lhassane Idoumghar, Pierre

Alain Muller, and François Petitjean. 2020. InceptionTime: finding AlexNet for

time series classification. Data Mining and Knowledge Discovery 34 (7 Sept. 2020),

1936–1962.

[29] Luka Jakovljevic, Dimitre Kostadinov, Armen Aghasaryan, and Themis Palpanas.

2022. Towards Building a Digital Twin of Complex System Using Causal Mod-

elling. In Complex Networks & Their Applications X. Springer International Pub-
lishing, Cham, 475–486.

[30] Diederik P. Kingma and Jimmy Ba. 2015. Adam: A Method for Stochastic Opti-

mization. In ICLR.
[31] A. Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. 2012. ImageNet classifica-

tion with deep convolutional neural networks. Commun. ACM 60 (2012).

[32] Arthur Le Guennec, Simon Malinowski, and Romain Tavenard. 2016. Data Aug-

mentation for Time Series Classification using Convolutional Neural Networks.

In ECML/PKDD on AALTD Workshop.
[33] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. 2015. Deep learning. Nature

521 (2015).

[34] Oleksandra Levchenko, Boyan Kolev, Djamel Edine Yagoubi, Reza Akbarinia,

Florent Masseglia, Themis Palpanas, Dennis E. Shasha, and Patrick Valduriez.

2021. BestNeighbor: efficient evaluation of kNN queries on large time series

databases. Knowl. Inf. Syst. 63, 2 (2021), 349–378.
[35] Xiaosheng Li, Jessica Lin, and Liang Zhao. 2019. Linear Time Complexity Time

Series Clustering with Symbolic Pattern Forest. In Proceedings of the Twenty-
Eighth International Joint Conference on Artificial Intelligence, IJCAI 2019, Macao,
China, August 10-16, 2019, Sarit Kraus (Ed.). ijcai.org, 2930–2936.

[36] Michele Linardi, Yan Zhu, Themis Palpanas, and Eamonn J. Keogh. 2020. Matrix

profile goes MAD: variable-length motif and discord discovery in data series.

Data Min. Knowl. Discov. 34, 4 (2020), 1022–1071.
[37] J. Lines, S. Taylor, and A. Bagnall. 2016. HIVE-COTE: The Hierarchical Vote

Collective of Transformation-Based Ensembles for Time Series Classification. In

IEEE ICDM.

[38] Benjamin Lucas, Ahmed Shifaz, Charlotte Pelletier, Lachlan O’Neill, Nayyar A.

Zaidi, Bart Goethals, François Petitjean, and Geoffrey I. Webb. 2019. Proximity

Forest: an effective and scalable distance-based classifier for time series. Data
Min. Knowl. Discov. 33, 3 (2019), 607–635.

[39] Vinod Nair and Geoffrey E. Hinton. 2010. Rectified Linear Units Improve Re-

stricted Boltzmann Machines. In ICML.
[40] Themis Palpanas. 2015. Data Series Management: The Road to Big Sequence

Analytics. SIGMOD Rec. 44, 2 (2015), 47–52.
[41] Themis Palpanas. 2016. Big Sequence Management: A glimpse of the Past,

the Present, and the Future. In SOFSEM (Lecture Notes in Computer Science),
Rusins Martins Freivalds, Gregor Engels, and Barbara Catania (Eds.), Vol. 9587.

Springer, 63–80.

[42] Themis Palpanas. 2019. Evolution of a Data Series Index. In ISIP.
[43] Themis Palpanas and Volker Beckmann. 2019. Report on the First and Second

Interdisciplinary Time Series Analysis Workshop (ITISA). SIGMOD Rec. 48, 3
(2019), 36–40.

[44] John Paparrizos and Michael J. Franklin. 2019. GRAIL: Efficient Time-Series

Representation Learning. Proc. VLDB Endow. 12, 11 (2019), 1762–1777.
[45] John Paparrizos and Luis Gravano. 2016. k-Shape: Efficient and Accurate Clus-

tering of Time Series. SIGMOD Rec. 45, 1 (2016), 69–76.
[46] John Paparrizos and Luis Gravano. 2017. Fast and Accurate Time-Series Cluster-

ing. ACM Trans. Database Syst. 42, 2 (2017), 8:1–8:49.
[47] John Paparrizos, Yuhao Kang, Paul Boniol, Ruey S. Tsay, Themis Palpanas, and

Michael J. Franklin. 2022. TSB-UAD: An End-to-End Benchmark Suite for Uni-

variate Time-Series Anomaly Detection. PVLDB (2022).

[48] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory

Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Des-

maison, Andreas Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan

Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith

Chintala. 2019. PyTorch: An Imperative Style, High-Performance Deep Learning

Library. In NeurIPS, Vol. 32.
[49] Botao Peng, Panagiota Fatourou, and Themis Palpanas. 2021. Fast Data Series

Indexing for In-Memory Data. VLDBJ (2021).

https://helios2.mi.parisdescartes.fr/~themisp/dCAM/
https://doi.org/10.1109/ICDM.2019.00106
https://doi.org/10.1145/1143844.1143874
https://doi.org/10.1145/1143844.1143874
https://doi.org/10.1145/3437963.3441815
https://proceedings.neurips.cc/paper/2020/hash/47a3893cc405396a5c30d91320572d6d-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/47a3893cc405396a5c30d91320572d6d-Abstract.html

[50] Botao Peng, Panagiota Fatourou, and Themis Palpanas. 2021. ParIS+: Data Series

Indexing on Multi-Core Architectures. IEEE Trans. Knowl. Data Eng. 33, 5 (2021),
2151–2164.

[51] Botao Peng, Panagiota Fatourou, and Themis Palpanas. 2021. SING: Sequence

Indexing Using GPUs. In ICDE.
[52] Alejandro Pasos Ruiz, Michael Flynn, James Large, Matthew Middlehurst, and

Anthony J. Bagnall. 2021. The great multivariate time series classification bake off:

a review and experimental evaluation of recent algorithmic advances. Data Min.
Knowl. Discov. 35, 2 (2021), 401–449. https://doi.org/10.1007/s10618-020-00727-3

[53] David E. Rumelhart, Geoffrey E. Hinton, and Ronald J. Williams. 1986. Learning

representations by back-propagating errors. Nature 323 (1986), 533–536.
[54] Patrick Schäfer and Ulf Leser. 2017. Fast and Accurate Time Series Classification

with WEASEL. In Proceedings of the 2017 ACM on Conference on Information and
Knowledge Management, CIKM 2017, Singapore, November 06 - 10, 2017. ACM,

637–646.

[55] Patrick Schäfer and Ulf Leser. 2020. TEASER: early and accurate time series

classification. Data Min. Knowl. Discov. 34, 5 (2020), 1336–1362.
[56] J. Schneider, P. Wenig, and T. Papenbrock. 2021. Distributed detection of sequen-

tial anomalies in univariate time series. VLDBJ 30 (2021).
[57] Ramprasaath R. Selvaraju, Michael Cogswell, Abhishek Das, Ramakrishna Vedan-

tam, Devi Parikh, and Dhruv Batra. 2017. Grad-CAM: Visual Explanations from

Deep Networks via Gradient-Based Localization. In 2017 IEEE International Con-
ference on Computer Vision (ICCV). 618–626. https://doi.org/10.1109/ICCV.2017.74

[58] J. Serrà, S. Pascual, and Alexandros Karatzoglou. 2018. Towards a universal neural

network encoder for time series. In CCIA.
[59] Ahmed Shifaz, Charlotte Pelletier, François Petitjean, and Geoffrey I. Webb. 2020.

TS-CHIEF: a scalable and accurate forest algorithm for time series classification.

Data Min. Knowl. Discov. 34, 3 (2020), 742–775.
[60] Denis Smirnov and EngelbertMephuNguifo. 2018. Time Series Classificationwith

Recurrent Neural Networks. In ECML/PKDD Workshop on Advanced Analytics
and Learning on Temporal Data (aaltd18).

[61] Chang Wei Tan, François Petitjean, and Geoffrey I. Webb. 2020. FastEE: Fast

Ensembles of Elastic Distances for time series classification. Data Min. Knowl.
Discov. 34, 1 (2020), 231–272.

[62] Liudmila Ulanova, Nurjahan Begum, and Eamonn J. Keogh. 2015. Scalable Cluster-

ing of Time Series with U-Shapelets. In Proceedings of the 2015 SIAM International

Conference on Data Mining, Vancouver, BC, Canada, April 30 - May 2, 2015, Suresh
Venkatasubramanian and Jieping Ye (Eds.). SIAM, 900–908.

[63] J. Wang, Z. Wang, Jianfeng Li, and J. Wu. 2018. Multilevel Wavelet Decomposition

Network for Interpretable Time Series Analysis. ACM SIGKDD (2018).

[64] Qitong Wang and Themis Palpanas. 2021. Deep Learning Embeddings for Data

Series Similarity Search. In SIGKDD.
[65] Z. Wang, W. Yan, and T. Oates. 2017. Time series classification from scratch with

deep neural networks: A strong baseline. In IJCNN.
[66] B. Xu, Naiyan Wang, T. Chen, and Mu Li. 2015. Empirical Evaluation of Rectified

Activations in Convolutional Network. Deep Learning Workshop, ICML (2015).

[67] Qiang Yang and Xindong Wu. 2006. 10 Challenging Problems in Data Mining

Research. IJITDM 05, 04 (2006).

[68] Dragomir Yankov, Eamonn J. Keogh, and Umaa Rebbapragada. 2008. Disk aware

discord discovery: finding unusual time series in terabyte sized datasets. Knowl.
Inf. Syst. 17, 2 (2008), 241–262.

[69] Lexiang Ye and Eamonn J. Keogh. 2011. Time series shapelets: a novel technique

that allows accurate, interpretable and fast classification. Data Min. Knowl. Discov.
22, 1-2 (2011), 149–182.

[70] Chuxu Zhang, Dongjin Song, Yuncong Chen, Xinyang Feng, Cristian Lumezanu,

Wei Cheng, Jingchao Ni, Bo Zong, Haifeng Chen, and Nitesh V. Chawla. 2019. A

Deep Neural Network for Unsupervised Anomaly Detection and Diagnosis in

Multivariate Time Series Data. AAAI 33, 01 (2019).
[71] Xuchao Zhang, Yifeng Gao, Jessica Lin, and Chang-Tien Lu. 2020. TapNet:

Multivariate Time Series Classification with Attentional Prototypical Network.

Proceedings of the AAAI Conference on Artificial Intelligence 34, 04 (Apr. 2020),
6845–6852. https://doi.org/10.1609/aaai.v34i04.6165

[72] B. Zhao, H. Lu, S. Chen, J. Liu, and D. Wu. 2017. Convolutional neural networks

for time series classification. J. Syst. Eng. Electron. 28, 1 (2017).
[73] Yudi Zheng, Qi Liu, Enhong Chen, Yong Ge, and J. Leon Zhao. 2014. Time Series

Classification Using Multi-Channels Deep Convolutional Neural Networks. In

WAIM.

[74] B. Zhou, A. Khosla, Lapedriza. A., A. Oliva, and A. Torralba. 2016. Learning Deep

Features for Discriminative Localization. CVPR (2016).

[75] Yan Zhu, Abdullah Mueen, and Eamonn J. Keogh. 2021. Matrix Profile IX: Admis-

sible Time Series Motif Discovery With Missing Data. IEEE Trans. Knowl. Data
Eng. 33, 6 (2021), 2616–2626.

https://doi.org/10.1007/s10618-020-00727-3
https://doi.org/10.1109/ICCV.2017.74
https://doi.org/10.1609/aaai.v34i04.6165

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Convolutional-based Neural Network
	2.2 Class Activation Map (CAM)
	2.3 CAM Limitations for Multivariate Series

	3 Problem Formulation
	4 Proposed Approach
	4.1 Dimension-wise Architecture
	4.2 A first Architecture: dCNN
	4.3 The dResNet/dInceptionTime Architectures
	4.4 Dimension-wise Class Activation Map
	4.5 Time Complexity Analysis
	4.6 Further Observations

	5 Experimental Evaluation
	5.1 Experimental Setup
	5.2 Baselines and Training Setup
	5.3 Classification Accuracy evaluation
	5.4 Discriminant Features Identification
	5.5 Influence of k
	5.6 C-acc versus Dr-acc
	5.7 Execution time evaluation
	5.8 Use Case: Surgeon skills explanation

	6 Conclusions
	References

