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SAND: Streaming Subsequence Anomaly Detection
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Motivation Challenges

We tackle the problem of subsequence anomaly detection in streams. Formally, for a given length ℓ, and a stream 

𝑇,  arriving in batch 𝕋ℓ
𝑡 ,  return the 𝜂 most abnormal subsequences of length ℓ.

Problem

Proposed Approach: SAND
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Experimental Evaluation: SAND in action: System overview
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(a) Throughput vs batch size (b) Throughput vs subsequence length (c) Throughput vs batch last index

- Comparison of static and streaming baselines on 30 data series [6,7] (both
with single and multiple normalities): (a) A
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- Screenshot of the Web User interface based on SAND:

STEP 1: Preprocessing

Computation of the model Θ using 𝑘 −

𝑆ℎ𝑎𝑝𝑒 [4] on an initial batch 𝕋ℓΘ
0

STEP 2: Model Update

Centroid 𝐶𝑘 Update:
We propose a new solution that enable 𝑘 −
𝑆ℎ𝑎𝑝𝑒 to operate incrementally. We do not
store/use all previous subsequences to
update the centroids

Weight 𝑤𝑘 Update:
We update 𝑤𝑘 associated to 𝐶𝑘 based on the
number of subsequences, the average extra-
cluster distance, and the age of the
subsequences.

STEP 1: Anomaly Scoring

At any time, for a subsequence 𝑇𝑗,ℓ in the

current batch 𝕋ℓΘ
𝑡 , we compute the distance

of 𝑇𝑗,ℓ to the model Θ.
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Subsequence anomaly detection in streams is an 
important problem with applications in medicine, energy 

production, etc

State-of-the-art subsequence anomaly detection methods [1,2] are not able to 
perform on a streaming fashion.

Extensions to handle in real-time changes of normal behavior are needed.

- Comparison of streaming methods throughputs:

𝑡ℎ
𝑟𝑜
𝑢
𝑔
ℎ
𝑝
𝑢
𝑡

(b
) Scalab

ility Evalu
atio

n

Current Batchold Batches


