SAND: Streaming Subsequence Anomaly Detection

Paul Boniol EDF R&D; University of Paris paul.boniol@etu.u-paris.fr

John Paparrizos University of Chicago jopa@uchicago.edu

Themis Palpanas University of Paris; IUF themis@mi.parisdescartes.fr

Michael J. Franklin University of Chicago mjfranklin@uchicago.edu

Motivation

Subsequence anomaly detection in streams is an important problem with applications in medicine, energy production, etc

Challenges

State-of-the-art subsequence anomaly detection methods [1,2] are not able to perform on a streaming fashion. Extensions to handle in real-time changes of normal behavior are needed. Nordic walk common subsequence Change of behavior Uncommon Behavior Accelerometer on the chest (x-axis) [3] 100 Rope jumping common subsequence (in *blue), uncommon subsequence (in red)*

Problem

We tackle the problem of subsequence anomaly detection in streams. Formally, for a given length ℓ , and a stream T, arriving in batch \mathbb{T}_{ℓ}^{t} , return the η most abnormal subsequences of length ℓ .

We update w_k associated to C_k based on the number of subsequences, the average extracluster distance, and the age of the subsequences.

•STEP 1: Anomaly Scoring

At any time, for a subsequence $T_{i,\ell}$ in the current batch $\mathbb{T}_{\ell_{\Theta}}^{t}$, we compute the distance of $T_{i,\ell}$ to the model Θ .

Experimental Evaluation:

Comparison of static and streaming baselines on 30 data series [6,7] (both with single and multiple normalities):

SAND in action: System overview

- Screenshot of the Web User interface based on SAND:

Bibliography

[1] Paul Boniol et al., Unsupervised and Scalable Subsequence Anomaly Detection in Large Data Series, VLDBJ 2021

- [2] Paul Boniol et al., Series2Graph: Graph-based Subsequence Anomaly Detection in Time Series, PVLDB, 2020
- [3] Dafne van Kuppevelt et al., PAMAP2 dataset preprocessed vo.3.0, 2017
- [4] John Paparrizos et al., k-Shape: Efficient and Accurate Clustering of Time Series. SIGMOD, 2015

[5] H. A. Dau et al., The UCR time series archive, IEEE/CAA, 2019

[6] A. Abdul-Aziz et al., Rotor health monitoring combining spin tests and data-driven anomaly detection methods. Structural Health Monitoring, 2012

[7] G. et al., Physiobank, physiotoolkit, and physionet. Circulation.

- [8] Haoran Ma et al., Isolation Mondrian Forest for Batch and Online Anomaly Detection, 2020
- [9] Chin Chia Michael Yeh et al., Matrix Profile I: All Pairs Similarity Joins for Time Series, ICDM, 2016

