a2 United States Patent

US007020649B2

(10) Patent No.: US 7,020,649 B2

Cochrane et al. 45) Date of Patent: Mar. 28, 2006
(54) SYSTEM AND METHOD FOR 6,199,063 Bl 3/2001 Colby et al. ...cccccveveenevene 707/4
INCREMENTALLY MAINTAINING 6,205451 Bl 3/2001 Norcott et al. .. 707/204
NON-DISTRIBUTIVE AGGREGATE 6,249,791 Bl 6/2001 Osborn et al. 707/200
FUNCTIONS IN A RELATIONAL DATABASE 6,334,128 B1 12/2001 Norcott et al. 707/5
6,484,159 B1* 11/2002 Mumick et al. 707/2

(735)

(73)

")

@

(22)

(65)

(1)

(52)
(58)

(56)

Inventors: Roberta Jo Cochrane, Los Gatos, CA
(US); Themistoklis Palpanas, Toronto
(CA); Mir Hamid Pirahesh, San Jose,
CA (US); Richard Sefton Sidle,

Assignee:

Notice:

Appl. No.:

Filed:

US 2004/0128289 Al

Int. CL.

GOG6F 17/30
US.CL e 707/3;707/5
Field of Classification Search

Mountain View, CA (US)

Corporation, Armonk, NY

International Business Machines

Us)

Subject to any disclaimer, the term of this
patent is extended or adjusted under 35

U.S.C. 154(b) by 488 days.
10/335,376
Dec. 30, 2002

Prior Publication Data

Jul. 1, 2004

(2006.01)

See application file for complete search history.

5,535,385 A
5,897,632 A
5,991,754 A
6,026,390 A
6,125,360 A
6,134,543 A

References Cited

U.S. PATENT DOCUMENTS

7/1996
4/1999
11/1999
2/2000
9/2000
10/2000

Dar et al.
Raitto et al. ..
Ross et al.
Witkowski et al. .
Witkowski et al. .

707/2,
707/3, 5

Griffin et al. 395/600

OTHER PUBLICATIONS

“Extending complex ad-hoc OLAP”—IJohnson et al. Pro-
ceedings of the eighth international conference on informa-
tion and knowledge management, Nov. 1999, pp. 170-179.
“Efficient view maintenance at data warchouses”—Agrawal
etal. ACM SIGMOD Record, Proceedings of the 1997 ACM
SIGMOD International Conference on Management of
Data, Jun. 1997, vol. 26, Issue 2, pp. 417-427.
“Incremental Maintenance for Non-Distributive Aggregate
Functions”—Palpanas et al. Proceedings of thr 28th VLDB
Conference, Hong Kong, China, 2002.

* cited by examiner

Primary Examiner—Safet Metjahic
Assistant Examiner—Thanh-Ha Dang
(74) Attorney, Agent, or Firm—John L. Rogitz

(57) ABSTRACT

A system for incrementally maintaining non-distributive
aggregate functions in a relational database includes a data
storage device in which a relational database is stored. A
processor communicates with the data storage device and
includes a database maintenance module. The database
maintenance module includes a program for incrementally
maintaining non-distributive aggregate functions in a rela-
tional database. The method embodied in the program
includes determining whether all functions in a relational
database query are distributive. Based on this determination,
a basic propagate phase graph is selectively altered to yield
a new propagate phase graph. Changes to an automatic
summary table are then applied thereto based on the new
propagate phase graph.

12 Claims, 6 Drawing Sheets

[

INPUT GRAPH FROM BASICJ

PROPAGATE PHASE

BUILD QGM AST
QUERY GRAPH

ARE INSERT-ONLY
AND ENTHER FUNCTIONS
ARE DISTRIBUTIVE

DELETES
ONLY NEED BE
APP’&IED

~
&

] &4
BUILD THE JOIN
PREDICATE
)

PUSH JOIN
PREDICATE DOWN
TO EACH LEAF
OPERATION
I
ADD JOIN TO EACH
LEAF OPERATION
WHERE JOIN I8 TO
THE TOP OF THE
BASIC PROPAGATE
GRAPH

)

65

-

72

NO REROUTE
DISTRIBUTVE
CREATE LEFT FUNCTION
QUIER JOIN COLUMNS
BETWEEN TOP OF T
BASIC PROPAGATE 80
GRAPH AND
RESULTS OF ABOVE
?

PROPAGATE PHASE COMPILATION LOGIC

U.S. Patent Mar. 28, 2006 Sheet 1 of 6 US 7,020,649 B2

o

MAINTENANCE MAINTENANCE MAINTENANCE
_ MODULE _ MODULE MODULE
24 4/ PROCESSOR | o, |/ PROCESSOR | g 1 processor
] | J
12— 14— 16—

DATA DATA
STORAGE STORAGE
DEVICE DEVICE

DATA
STIORAGE
DEVICE

FIG. 1

U.S. Patent Mar. 28, 2006 Sheet 2 of 6 US 7,020,649 B2

UPDATE
OPERATION |)

ANOTHER
NO AST THAT IS
AFFECTED BY AT B
THE UPDATE
OPERATION 54
?
I APPLY
PHASE |)
56
58
FIG, 2

UDATE OPERATION COMPILATION
WITH ASTs

U.S. Patent

Mar. 28, 2006 Sheet 3 of 6 US 7,020,649 B2
INPUT GRAPH FROM BASIC __,| BULD QGM AST
PROPAGAITE PHASE QUERY GRAPH \
K i 64
60
62 BUILD THE JOIN P\
ALL DISTRIBU-) 65
TIVE ?
PUSH JOIN \
PREDICATE DOWN
TO EACH LEAF 72
OPERATION
DELTAS T
YES " ARE INSERT-ONLY

AND EITHER FUNCTIONS
ARE DISTRIBUTIVE
OR MIN OR
MAX?

66 NO

DELETES

ONLY NEED BE

APPLIED
?

ADD JOIN TO EACH
LEAF OPERATION
WHERE JOIN IS TO
THE TOP OF THE
BASIC PROPAGATE
GRAPH

|

DELTAS
DELETION
FREE?

YES

A4

REROUTE
DISTRIBUTIVE
CREATE LEFT FUNCTION
(| OuERJON COLUMNS
,g | BETWEEN TOP OF T
BASIC. PROPAGATE 80
GRAPH AND
RESULTS OF ABOVE
, v e
v 70
FIG. 3

PROPAGATE PHASE COMPILATION LOGIC

U.S. Patent Mar. 28, 2006 Sheet 4 of 6 US 7,020,649 B2

When a pushdown
through a super-aggregate \
is required, Do 100

\J

Mark the predicate as a ﬁ
super-aggregate predicate 102

!

Define “"A" as a dimension column and g(A) \
as the corresponding indicator column 04

!

When the super-aggregaie predicate \
encounters a simple group-by. operation, Do 106

!

For each A in the simple group-by operation,
preserve all terms in the predicate containing \
A and add term g(A) = 0 1o the predicate 108

!

For each A not in the simple group-by operation, \
remove all terms in the predicate containing A
and add term g(A) = 1 to the predicate 110

l 112

FIG. 4

U.S. Patent Mar. 28, 2006 Sheet 5 of 6 US 7,020,649 B2

Input graph from propagate phase [
¥ 120

Input properties from propagate phase N
122

Any inserts

Build left outer- | ™

fo be gpplied join with AST 128
NO 124 126
Build inner join with AST |/ 143 \
lf Loop over all
Add update aggregate
Update to operation fo Fu functions for
AST reg]uned /‘ Jrop of groph 1 44]—] 54
NO 142
130 146
Function Build set
MIN or MAX AND™_YES | clauses
onl\éI in|§rerts in
e? as s 150
144 Build set
clause
Non- toreplace |,
dis’rribuTivg function old vaiue
148 Build set
clause to
Distributive apply delta [
function value to
? ~| oldvalue
154
vf
O FIG, 58 FiG. oA
' APPLY PHASE

COMPILATION LOGIC

U.S. Patent

Mar. 28,2006 Sheet 6 of 6 US 7,020,649 B2
FROM FIG. 5A
l 136
Delete to Add delete operation
AST rergqunred to top of graph
138
Insert o Add insert operation
AST reguured to top of graph

FIG. 5B
APPLY PHASE
COMPILATION LOGIC

US 7,020,649 B2

1

SYSTEM AND METHOD FOR
INCREMENTALLY MAINTAINING
NON-DISTRIBUTIVE AGGREGATE

FUNCTIONS IN A RELATIONAL DATABASE

FIELD OF THE INVENTION

The present invention relates generally to computer soft-
ware, and more specifically to database management soft-
ware for managing relational database systems.

BACKGROUND OF THE INVENTION

Materialized views, or Automatic Summary Tables
(ASTs), are increasingly being used to facilitate the analysis
of the large amounts of data being collected in relational
databases. The use of ASTs can significantly reduce the
execution time of a query. This reduction in execution time
is particularly significant for databases with sizes in the
terabyte to petabyte range. Such queries tend to be extremely
complex and can involve a large number of join and group-
ing operations.

One major advantage of using ASTs is that they are
precomputed once and subsequently can be used multiple
times to quickly answer complex queries. When base rela-
tions are modified, these modifications must be propagated
to the affected ASTs. Unfortunately, using current tech-
niques, the systems can only incrementally update a
restricted set of ASTs, e.g., those only containing distribu-
tive aggregate functions. The remainder must be fully
recomputed. Previous work has studied the problem of
incremental view maintenance in which all the necessary
changes for the AST are computed based only on the
modifications to the base table (and the corresponding
values in the AST). This process is called incremental view
maintenance and many commercial products support it.

Due to the complexity of the queries and the magnitude of
the data, recomputation of ASTs in large-scale databases is
prohibitive. Since the set of updates to the base tables is
usually only some small percentage of those tables, incre-
mental maintenance of an AST is usually much quicker than
full recomputation. For example, a typical warehouse can
contain up to six (6) years of data. Daily inserts into a fact
table in this warehouse may constitute only about five
hundredths of a percent (0.05%) of the entire size of the
table, while an associated AST can grow up to a billion rows.
When updates occur in the base data, the system determines
which ASTs are affected and propagates the changes through
the AST definitions to produce the delta changes. It then
applies these deltas to their respective ASTs. If an AST is
automatically refreshed in the same unit of work as the
changes to the underlying base data are applied, then the
maintenance is considered immediate. Otherwise, it is
deferred.

SUMMARY OF THE INVENTION

The present invention provides a system, method, and
computer program product for immediate incremental main-
tenance of non-distributive aggregate functions in material-
ized views of relational databases. The invention supports
efficient incremental maintenance of all aggregate functions
including powerful statistical and analytic functions (such as
standard deviation and linear regression functions) and all
user-defined aggregate functions. The computer program
product for incrementally maintaining non-distributive
aggregate functions in a relational database includes logic

10

20

25

40

45

55

60

65

2

means for determining whether all functions in a relational
database query are distributive. Further, the computer pro-
gram product includes logic means that selectively alters a
predetermined propagate phase data structure to yield a new
propagate phase data structure. The computer program prod-
uct also includes logic means that uses the new propagate
phase data structure to apply changes to an automatic
summary table in a relational database.

In a preferred embodiment, the computer program prod-
uct also includes logic means that determines whether deltas
in the query are insert-only and all functions of the query are
distributive or MAX or MIN. The predetermined propagate
phase data structure is altered based on this determination.
Preferably, the predetermined propagate phase data structure
is also selectively altered based on determining whether
deltas in the query are deletes only.

In a preferred embodiment, the computer program prod-
uct alters the predetermined propagate phase data structure
by using logic means that builds a join predicate between the
basic predetermined propagate phase data structure and the
AST query graph. The logic means then pushes the join
predicate down to each leaf operation of the AST query
graph and adds the join predicate to each leaf operation
where the join predicate is to the top of the predetermined
propagate phase data structure to yield the new propagate
phase data structure. Moreover, the computer program prod-
uct includes logic means that determines if deltas in non-
distributive functions are deletion free. If so, logic means
reroutes distributive function columns. Otherwise, logic
means creates a left outer join operation between the top of
the predetermined propagate phase data structure and the
AST query graph.

Preferably, the computer program product includes logic
means that selectively builds an inner join operation
between the new propagate phase data structure and an
automatic summary table if there are not any inserts to be
applied to an automatic summary table. If there are any
inserts to be applied to an automatic summary table, logic
means within the computer program product builds a left
outer join operation between the new propagate phase data
structure and an automatic summary table. In a preferred
embodiment, the computer program product also includes
logic means that adds an update operation above the auto-
matic summary table if an update to the automatic summary
table is required. If a delete to an automatic summary table
is required, logic means adds a delete operation above the
automatic summary table. Additionally, if an insert to an
automatic summary table is required, logic means adds an
insert operation above the automatic summary table.

In another aspect of the present invention, a database
management system includes a data storage device in which
a relational database is stored. A processor communicates
with the data storage device and has a database maintenance
module associated therewith. The database maintenance
module includes a program for incrementally maintaining
non-distributive aggregate functions in a relational database.

In yet another aspect of the present invention, a method
for incrementally maintaining non-distributive aggregate
functions in a relational database includes selectively alter-
ing the predetermined propagate phase data structure. The
predetermined propagate phase data structure is altered by
building a join predicate between the predetermined propa-
gate phase data structure and the AST query graph. The join
predicate is pushed down to each leaf operation of the AST
query graph. Further, the join predicate is added to each leaf
operation where the join predicate is to the top of the

US 7,020,649 B2

3

predetermined propagate phase data structure. These steps
yield a new propagate phase data structure.

In another aspect of the invention, a method to perform
efficient incremental maintenance of non-distributive aggre-
gate functions including user-defined aggregate functions in
materialized views when base tables of the materialized
view are modified by using selective recomputation pursuant
to any SQL update operation or bulk load insert operation,
where a materialized view contains a unique key.

The preferred embodiment of the present invention will
now be described, by way of example, with reference to the
accompanying drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a block diagram of a system architecture;

FIG. 2 is a flow chart of the general compile-time logic of
the present invention;

FIG. 3 is a flow chart of the propagate phase logic;

FIG. 4 is a flow chart of a subroutine of the propagate
phase logic; and

FIG. 5 is a flow chart of the apply phase logic.

DETAILED DESCRIPTION OF THE
INVENTION

A detailed description of the present invention can be
found in Palpanas et al., “Incremental Maintenance for
Non-Distributive Aggregate Functions”, Proc. of the 28th
VLDB Conf., Hong Kong, 2002, which is hereby incorpo-
rated by reference.

Referring initially to FIG. 1, the system architecture is
shown and is generally designated 10. FIG. 1 shows that the
system 10 includes one or more processors 12, 14, 16 that
are connected to one or more data storage devices 18, 20, 22,
such as disk drives, in which one or more relational data-
bases are stored. In a preferred embodiment, each processor
12, 14, 16 includes a maintenance module 24, 26, 28 for
incrementally maintaining materialized views of the rela-
tional databases stored in the storage devices 18, 20, 22.

Preferably, each of the processors 12, 14, 16 utilize a
standard operator interface, e.g., IMS/DB/DC, CICS, TSO,
OS/2 or other similar interface, to transmit electrical signals
to and from the processors 12, 14, 16. The electrical signals
represent commands for performing various search and
retrieval functions, i.e., termed queries, against the databases
stored in the data storage devices 18, 20, 22. Preferably,
these queries conform to the Structured Query Language
(SQL) standard, and invoke functions performed by Rela-
tional Database Management System (RDBMS) software. In
a preferred embodiment, the RDBMS software comprises
the DB2 product offered by IBM for the MVS, OS/2, UNIX,
or WINDOWS NT operating systems. Those skilled in the
art will recognize, however, that the present invention has
application to any RDBMS software.

It is to be understood that, in a preferred embodiment,
each processor 12, 14, 16 includes a series of computer-
executable instructions, as described below, which will
allow each processor to provide incremental maintenance
for materialized views in the relational databases residing on
the data storage devices 18, 20, 22. These instructions may
reside, for example, in the maintenance modules 24, 26, 28
of the processors 12, 14, 16, which can simply be a portion
of the random access memory (RAM) of the processors 12,
14, 16.

Alternatively, the instructions may be contained on a data
storage device with a computer readable medium, such as a

15

20

25

40

45

55

60

65

4

computer diskette. Or, the instructions may be stored on a
magnetic tape, hard disk drive, electronic read-only memory
(ROM), optical storage device, or other appropriate data
storage device or transmitting device thereby making a
computer program product, i.e., an article of manufacture
according to the invention. In an illustrative embodiment of
the invention, the computer-executable instructions may be
lines of C++ compatible code.

The flow charts herein illustrate the structure of the logic
of the present invention as embodied in computer program
software. Those skilled in the art will appreciate that the flow
charts illustrate the structures of computer program code
elements including logic circuits on an integrated circuit,
that function according to this invention. Manifestly, the
invention is practiced in its essential embodiment by a
machine component that renders the program elements in a
form that instructs a digital processing apparatus (that is, a
computer) to perform a sequence of function steps corre-
sponding to those shown.

Referring to FIG. 2, the general compile-time logic of the
present invention is shown and commences at block 50 with
an update operation to the base data in one or more ASTs. At
decision diamond 52 it is determined whether another AST
is affected by the update, and if so, the logic proceeds to
block 54 to execute the below-described propagate phase
and then to block 56 to execute the apply phase discussed
further herein. The logic then loops back to decision dia-
mond 52. When no other ASTs are affected the logic ends at
state 58.

It is to be understood that the propagate and apply
operations at blocks 54 and 56 establish a compilation step.
The execution of the results of these two phases of compi-
lation includes computing a set of changes that must be
made to the ASTs, and applying the changes.

In the preferred non-limiting embodiment, the main com-
pilation work is during the construction of a query graph
model (QGM). Haas et al., “Extensible Query Processing in
Starburst”, ACM SIGMOD Int’l Conf., Portland, Oreg.
1989, pp. 377388, incorporated herein by reference, sets
forth details of QGM. For convenience, a QGM is a struc-
tural representation of one or more SQL statements. The
QGM consists of boxes and edges between the boxes. Each
box implements one or more relational operations on its
input columns, and also specifies the output columns. The
edges denote the flow of tuples from the output columns of
one box to the input columns of another box.

It is to be further understood that during compilation of an
update/delete/insert (UDI) statement, for each AST that
depends on base tables that are affected by the UDI state-
ment, the propagate phase of AST maintenance compilation
is performed, as is the apply phase of AST maintenance
compilation. This produces a program which, when
executed, results in updating the base tables. Also, for each
AST that depends on the updated base tables, the set of
changes that must be made to the AST is computed (this is
the propagate phase of execution), and then the changes
applied to the AST (this is the apply phase of execution).

Referring to FIG. 3, the detailed propagate phase logic is
shown. It is to be understood that the propagate phase logic
represents compile time that occurs prior to each update
being made permanent. Commencing at block 60, a basic
propagate phase graph resulting from a propagate phase for
distributive aggregate functions is input to a maintenance
module 24, 26, 28. It is to be appreciated that this basic
propagate phase graph is predetermined using techniques
well known in the art. Moving to decision diamond 62, it is
determined whether the functions of the updates are all

US 7,020,649 B2

5

distributive. If so, the logic ends at state 70. If not, the logic
moves to decision diamond 66, wherein it is determined
whether the deltas, e.g., the changes to the ASTs, are
insert-only and either functions are distributive or MIN or
MAX. A positive test result ends the logic at state 70, but a
negative test result sends the logic to yet another decision at
diamond 68, wherein it is determined whether only deletes
need be applied to the ASTs. If so, the logic ends at state 70.

A negative test at decision diamond 68, however, sends
the logic to block 64, wherein a QGM AST query graph is
built. At block 65, a join predicate is built between the basic
propagate phase graph and the AST query graph. The join
predicate is between the unique key of the basic propagate
graph and the unique key of the AST query graph. For a
simple group-by query, these unique keys consist of the
columns of the GROUP BY clause. For complex group-by
queries (super-aggregates), the unique key is described
below.

Proceeding to block 72, the join predicate is pushed down
to each leaf operation. More specifically, the join predicate
is pushed down to each leaf operation of the AST query
graph where a “leaf operation” is one of the lowest QGM
operations of the graph that operate directly on one or more
of the base tables.

At block 74, the join is added to each leaf operation
wherein the join is to the top of the basic propagation graph
input above to yield a new propagate phase graph. Continu-
ing to decision diamond 76, it is determined whether the
deltas are deletion free. If not, the logic moves to block 78
and a left outer join is created between the top of the basic
propagate graph and the results of the above, i.c., the new
propagate phase graph. The left outer join is added to
preserve deleted rows from the basic propagate phase. The
recomputation step uses the after-image of the updated base
tables. If all rows that contribute to a given group (row) of
the AST are deleted from the base tables, then this group will
not appear in the result of the recomputation. The outer join
preserves such rows so that they will be deleted from the
AST correctly.

Also, when the outer join of step 78 is required, certain
aggregate functions will be computed by each operand of the
join, as described in Section 3.2 of Palpanas et al. Briefly and
for convenience, to eliminate the inefficiency of computing
new values for distributive aggregative functions twice
(once during the computation of the propagate delta and
again during the selective recomputation of the AST), the
distributive aggregate functions are computed by the left
side of the join which is the basic propagate phase. On the
other hand, the non-distributive functions are computed by
the right side of the join, which is the selective recomputa-
tion step.

At decision diamond 76, if the deltas are deletion free, the
logic moves to block 80 where the distributive function
columns are rerouted to eliminate unnecessary join opera-
tions. More specifically, at block 80, the columns for the
distributive aggregate functions are rerouted (“pulled up”)
from the top of the basic propagate phase graph, through the
joins that were created after the join pushdown at step 74 up
to the top of the AST query graph (which is the top of the
new propagate phase graph).

The functionality described above is a prime component
of the incremental maintenance procedure of the present
invention and defines the class of ASTs that the method of
the present invention supports. First, there is a requirement
that there exists a key that uniquely identifies the tuples in
the AST. Second, given a predicate on the aforementioned
unique key, it is required that it is possible to push the
predicate down through the AST query graph model (QGM)
graph to the leaf operations. If these two requirements are
met, then the AST is accepted as incrementally maintain-

20

25

40

45

60

65

6

able, since the selective recomputation step can be efficiently
supported. It happens, however, that the basic predicate
pushdown logic, described above, does not support predicate
pushdown through super-aggregates. A super-aggregate is a
SQL language clause that supports the computation of
measures for different levels of a hierarchy. The result of a
super-aggregate is a table that contains the union of many
simple group-by operations not all of which contain the
same set of grouping columns. In the resulting table, one can
identify which rows belong to each simple group-by. A
column in the group-by clause of a super-aggregate is
referred to as a dimension column. If the dimension column
is not nullable, then a NULL value for this column indicates
that it is not one of the grouping columns for a given row.
For nullable columns, SQL provides a “GROUPING” func-
tion whose value is zero (0) when the dimension is one of the
grouping columns and one (1) when it is not.

To satisfy the unique key requirement for incremental
maintenance, a dimension column in a super-aggregate AST
must either be non-nullable or contain a corresponding
indicator column that computes the GROUPING function
for the dimension. Pushing predicates through a grouping
expression that contains a super-aggregate must alter the
predicate in such a way as to appropriately recompute the
aggregate values for each of the affected groups. If the
super-aggregate computes values for different levels in a
dimension hierarchy, the results of the propagate will con-
tain rows for each level in the hierarchy that must be
modified. The predicate pushdown must ensure that subto-
tals for higher levels in the hierarchy do not double count the
contributions from the lower levels. Accordingly, when the
AST involves a super-aggregate predicate, special predicate
pushdown rules must be utilized to avoid erroneous results.

For super-aggregates, FIG. 4 is the content of block 72
above. The super-aggregate predicate pushdown logic is
shown and commences at block 100 with a do loop wherein
when a pushdown through a super-aggregate predicate is
required the following steps are performed. At block 102,
the predicate is marked as a super-aggregate predicate. Next,
at block 104, “A” is defined as a dimension column and
“g(A)” is defined as the corresponding indicator column.
Proceeding to block 106, when the marked super-aggregate
predicate encounters a simple group-by operation, an inner
do loop is entered wherein the succeeding steps are per-
formed. At block 108, for each A in the simple group-by
operation, preserve all terms in the predicate containing A
and add term g(A)=0 to the predicate. Then, at block 110, for
each A not in the simple group-by operation, remove all
terms in the predicate containing A and add term g(A)=1 to
the predicate. The logic then ends at state 112.

FIG. 5 shows the apply phase logic which commences
with block 120 where the new graph obtained during the
propagate phase is input. At block 122, the properties from
the propagate phase are also input. Moving to decision
diamond 124, it is determined whether any inserts are to be
applied to the AST. If not, an inner join is built between the
new propagate phase graph and the AST at block 126. If so,
a left outer join is built between the new propagate phase
graph and the AST at block 128. From block 126 or block
128, the logic continues to decision diamond 130 where it is
determined whether an update to the AST is required.

If an update is not required, the logic proceeds to decision
diamond 132 where it is determined whether a delete to an
AST is required. If not, the logic moves to decision diamond
134 where it is determined whether an insert to the AST is
required. At decision diamond 132, if a delete is required,
the logic moves to block 136 and a delete operation on the
AST is added at the top of the graph with the corresponding
predicate. The predicate is created such that the delete
operation only processes the input rows that are to be

US 7,020,649 B2

7

deleted. At execution time, the results of the preceding steps
can contain a mixture of rows: rows to be deleted, rows to
be inserted, and rows to be updated. So each update/delete/
insert operation of the apply phase must selectively process
its input rows. This is the purpose of the predicates. The
logic then proceeds to decision diamond 134.

At decision diamond 134 it is determined whether an
insert to an AST is required. If so, the logic moves to block
138 and an insert operation on the AST is added at the top
of the graph with the corresponding predicate. Here “cor-
responding predicate” is required such that insert only
processes those rows that are to be inserted. Otherwise, the
logic ends at state 140.

Returning to decision diamond 130, if an update to an
AST is required, the logic moves to block 142 where an
update operation on the AST is added at the top of the graph
with the corresponding predicate. Here “corresponding
predicate” is required to only process the update rows. Block
143 indicates that the operations described below at
144-154 are evaluated for each aggregate function (i.e. a
loop).

At decision diamond 144, it is determined whether the
function is MIN or MAX and only the deltas are only inserts.
If so, the logic moves to block 146, where set clauses are
built as follows:

newMin = case when (oldMin is null) then newValue
when (newValue < oldMin) then newValue
else oldMin

end

newMax = case when (oldMax is null) then newValue
when (newValue > oldMax) then newValue
else oldMax

end

The logic then proceeds to decision diamond 132 and
continues as described above.

Returning to decision diamond 144 if the decision is
negative, the logic moves to decision diamond 148 where it
is determined whether the function is a non-distributive
function. If so, the logic moves to block 150 and a set clause
is built to replace the old value. The logic then continues to
decision diamond 132 and continues as described above. If
the function is not a non-distributive function in decision
diamond 148, the logic moves to decision diamond 152
where it is determined whether the function is a distributive
function. If so, a set clause is built to apply the delta value
to the old value. From block 154, or a negative response at
decision diamond 152, the logic continues to decision dia-
mond 132 and continues as described above.

While the particular SYSTEM AND METHOD FOR
INCREMENTALLY MAINTAINING NON-DISTRIBU-
TIVE AGGREGATE FUNCTIONS IN A RELATIONAL
DATABASE as herein shown and described in detail is fully
capable of attaining the above-described aspects of the
invention, it is to be understood that it is the presently
preferred embodiment of the present invention and thus, is
representative of the subject matter which is broadly con-
templated by the present invention, that the scope of the
present invention fully encompasses other embodiments
which may become obvious to those skilled in the art, and
that the scope of the present invention is accordingly to be
limited by nothing other than the appended claims, in which
reference to an element in the singular is not intended to
mean “one and only one” unless explicitly so stated, but
rather “one or more.” All structural and functional equiva-

10

15

20

25

30

35

40

45

50

55

60

65

8

lents to the elements of the above-described preferred
embodiment that are known or later come to be known to
those of ordinary skill in the art are expressly incorporated
herein by reference and are intended to be encompassed by
the present claims. Moreover, it is not necessary for a device
or method to address each and every problem sought to be
solved by the present invention, for it is to be encompassed
by the present claims. Furthermore, no element, component,
or method step in the present disclosure is intended to be
dedicated to the public regardless of whether the element,
component, or method step is explicitly recited in the claims.
No claim element herein is to be construed under the
provisions of 35 U.S.C. section 112, sixth paragraph, unless
the element is expressly recited using the phrase “means
for.”

We claim:

1. A system for incrementally maintaining non-distribu-
tive aggregate functions in materialized views of relational
databases, comprising:

at least one data storage device including at least one
relational database;

at least one processor communicating with said data
storage device;

at least one database maintenance module associated with
said processor and including a program for selectively
altering a predetermined propagate phase data structure
to yield a new propagate phase data structure and for
selectively applying changes to at least one material-
ized view according to said new propagate phase data
structure, wherein:

when a grouping expression contains a super-aggregate,
the program undertakes logic including:
marking a predicate as a super-aggregate predicate;
defining a dimension column A and a corresponding

indicator column g(A); and when the marked predi-
cate encounters a simple group-by operation, itera-
tively;

(a) for each A in said simple group-by operation,
preserving all terms in said marked predicate con-
taining A and adding term g(A)=0 to said marked
predicate; and

(b) for each A not in said simple group-by operation,
removing all terms in said marked predicate contain-
ing A and adding term g(A)=1 to said marded
predicate.

2. A computer system for incrementally maintaining non-
distributive aggregate functions in materialized views of
relational databases, comprising:

means for selectively altering a predetermined propagate
phase data structure to yield a new propagate phase
data structure by

(a) building an AST query graph;

(b) building a join predicate between a predetermined
propagate phase data structure and said AST query
graph;

(c) pushing said join predicate down to each leaf opera-
tion of said AST query graph;

(d) adding said join predicate to each leaf operation where
said join predicate is to the top of said a predetermined
propagate phase data structure; and

means for selectively applying changes to at least one
materialized view according to said new propagate
phase data structure.

3. The computer program product of claim 2, wherein said

altering includes:

building an AST query graph;

US 7,020,649 B2

9

building a join predicate between said predetermined
propagate phase data structure and said AST query
graph;

pushing down said join predicate to each leaf operation
of said AST query graph;

adding said join predicate to each said leaf operation
wherein said join predicate is to the top of said
predetermined propagate phase data structure, yield-
ing said new propagate phase data structure;

if said deltas are deletion free, then rerouting distribu-
tive function columns to eliminate unnecessary join
operations, else creating a left outer join between the
top of said predetermined propagate phase data
structure and said AST query graph.

4. The computer program product of claim 3, wherein
when a grouping expression contains a super-aggregate, said
predicate pushing down comprises:

marking said predicate as a super-aggregate predicate;

defining a dimension column A and a corresponding

indicator column g(A); and when said marked predicate

encounters a simple group-by operation, iteratively:

(a) for each A in said simple group-by operation,
preserving all terms in said marked predicate con-
taining A and adding term g(A)=0 to said marked
predicate; and

(b) for each A not in said simple group-by operation,
removing all terms in said marked predicate contain-
ing A and adding term g(A)=1 to said marked
predicate.

5. The computer program product of claim 3, wherein said
applying includes:

if any inserts to said materialized view are required, then

building a left outer join between said new propagate
phase data structure and said materialized view, else
building an inner join between said materialized view
and said new propagate phase data structure;

if any updates to said materialized view are required, then

adding an update operation on said materialized view at
the top of said new propagate phase data structure with
the corresponding predicate and iteratively building set
clauses for all aggregate functions;

if any deletes to said materialized view are required, then

adding a delete operation on said materialized view at
the top of said new propagate phase data structure with
the corresponding predicate;

if any inserts to said materialized view are required, then

adding an insert operation on said materialized view at
the top of said new propagate phase data structure with
the corresponding predicate.

6. The computer program product of claim 5, wherein said
iterative building includes:

if said aggregate function is a MIN function or a MAX

function, and if said deltas are only inserts, then build-
ing said set clauses by conditionally updating new
minimum and new maximum values as:

(a) newMin=newValue if [(oldMin is

(newValue<oldMin)]|
(b) newMax=newValue if [(oldMax is NULL) or
(newValue>oldMax)]; else
if said aggregate function is non-distributive then build-
ing a set clause to replace the old value, otherwise
building a set clause to apply the delta value to the
old value.

7. A computer program product comprising a machine-
readable medium having machine-executable instructions
thereon including code for incrementally maintaining non-

NULL) or

5

10

15

20

25

30

35

40

50

55

60

65

10

distributive aggregate functions in materialized views of
relational databases, said code comprising:

a first code for selectively altering a predetermined propa-
gate phase data structure to yield a new propagate
phase data structure; and

a second code for selectively applying changes to at least
one materialized view according to said new propagate
phase data structure, wherein said altering occurs only
if all of the following conditions are false;

(a) all functions of a query are distributive;

(b) deltas in said query are insert-only, and said func-
tions are either distributive or MAX functions or
MIN functions; and

(c) only deletes need be applied to said materialized
views.

8. A method for incrementally maintaining non-distribu-
tive aggregate functions in materialized views of relational
databases, comprising:

selectively altering a predetermined propagate phase data
structure to yield a new propagate phase data structure;

selectively applying changes to at least one materialized
view according to said new propagate phase data
structure, wherein said applying includes:

if any inserts to said materialized view are required, then
building a left outer join between said new propagate
phase data structure and said materialized view, else
building an inner join between said materialized view
and said new propagate phase data structure;

if any updates to said materialized view are required, then
adding an update operation on said materialized view at
the top of said new propagate phase data structure with
the corresponding predicate and iteratively building set
clauses for all aggregate functions;

if any deletes to said materialized view are required, then
adding a delete operation on said materialized view at
the top of said new propagate phase data structure with
the corresponding predicate;

if any inserts to said materialized view are required, then
adding an insert operation on said materialized view at
the top of said new propagate phase data structure with
the corresponding predicate.

9. The method of claim 8, wherein said altering occurs

only if all of the following conditions are false:

(a) all functions of a query are distributive;

(b) deltas in said query are insert-only and said func-
tions are either distributive or MAX functions or
MIN functions; and

(c) only deletes need be applied to said materialized
views.

10. The method of claim 9, wherein said altering includes:

building an AST query graph;

building a join predicate on said predetermined propagate
phase data structure and said AST query graph;

pushing down said join predicate to each leaf operation of
said AST query graph;

adding said join predicate to each said leaf operation
wherein said join predicate is to the top of said prede-
termined propagate phase data structure, yielding said
new propagate phase data structure;

if said deltas are deletion free, then rerouting distributive
function columns to eliminate unnecessary join opera-
tions, else creating a left outer join between the top of
said predetermined propagate phase data structure and
said AST query graph.

US 7,020,649 B2

11

11. The method of claim 10, wherein when a grouping
expression contains a super-aggregate, said predicate push-
ing down comprises:

marking said predicate as a super-aggregate predicate;

defining a dimension column A and a corresponding

indicator column g(A); and

when said marked predicate encounters a simple group-by

operation, iteratively:

(a) for each A in said simple group-by operation,
preserving all terms in said marked predicate con-
taining A and adding term g(A)=0 to said marked
predicate; and

(b) for each A not in said simple group-by operation,
removing all terms in said marked predicate contain-
ing A and adding term g(A)=1 to said marked
predicate.

10

15

12

12. The method of claim 8, wherein said iterative building
includes:
if said aggregate function is a MIN function or a MAX
function, and if said deltas are only inserts, then build-
ing said set clauses by conditionally updating new
minimum and new maximum values as:
(a) newMin=newValue if [(oldMin is NULL) or
(newValue<oldMin)]|
(b) newMax=newValue if [(oldMax is NULL) or
(newValue>oldMax)]; else
if said aggregate function is non-distributive then build-
ing a set clause to replace the old value, otherwise
building a set clause to apply the delta value to the
old value.

