
Scalable Similarity Matching in Streaming Time Series
Alice Marascu, Suleiman Ali Khan, Themis Palpanas

Pacific-Asia Conference on Knowledge Discovery and Data Mining (PAKDD), May 2012

Erratum
Below we describe an error in the presentation of the experimental results of our paper. Note that
this error, which appears in the published version of the paper, disfavours our algorithm, SSM. In
reality, all the matches SSM produces are true matches, that is, SSM always has a precision of 1.

This observation is relevant to Figure 8(left) and Table 1. All the precision numbers for SSM should
be 1.

This implies that there is a discrepancy between the matches reported by SSM and those reported
by SPRING [1]. Indeed, SSM reports more (correct) matches, some of which SPRING does not report.
(Hence the error in presenting the precision numbers for SSM.)

The error in the presentation of our results was caused by a problematic situation we identified in
the implementation of the SPRING [1] algorithm: in some cases, where we need to expand one of
the partial results produced so far, SPRING may pick a partial result that may become invalid later
on. However, this may lead the algorithm to miss some correct matches down the road (deriving
from the path not followed). In our implementation of SSM we recognized this problem, and were
able to identify more matches. Below we give some more details on this problem.

Problem in DTW/LCSS dynamic programing solution

In the following discussion, we consider SPRING-LCSS, but the same applies for SPRING-DTW.
Assume we want to compute the LCSS distance between pattern A = {a1, …, a3} and stream B = {b1,
…, b10}. Each cell of the LCSS distance matrix is referred to as LCSS(row,col).

a5
a4
a3
a2
a1
 b1 b2 b3 b4 b5 b6 b7 b8 b9 b10

The LCSS update equations are:

()

1 1

1

1

0

(,)
1 (,)

(,) (())
max[(,),

(,)]
1, 2,3... 1, 2,3...

t i
t i

t i

t i

if A or B is Empty

dist a b
LCSS a b if

LCSS A B abs t i
LCSS a b otherwise
LCSS a b

where t n and i m

γ
δ− −

−

−




< ∧  +  = − ≤  




= =

The S matrix has the same size as the LCSS one, and stores the starting time stamp of each sequence,
e.g., a sequence with LCSS value given in LCSS(a5,b5) has a starting time given in S(a5,b5). The
starting time matrix is represented as S(row,col).

Problem: In order to compute LCSS(a3,b7) if dist(a3,b7) > γ, the max value of LCSS(a2,b7), or
LCSS(a3,b6), will be promoted and will become the corresponding sequence starting time stamp in
the S matrix. Consider the case where the value LCSS(a3,b6) is chosen. It is still possible that both
sequences evolving from LCSS(a3,b6) and LCSS(a2,b7) could be matching sequences, but we
promoted LCSS(a3,b6), which is better in the sense that it has a higher current LCSS value, and is
therefore more likely to become a matching sequence. Consider though the case where LCSS(a3,b6)
is larger than LCSS(a2,b7), but also S(a3,b6) is much lower than S(a2,b7). Then, S(a3,b6) is more likely
to become timely invalid in the future than S(a2,b7): if the sequence from S(a3,b6) is rejected in
upcoming iterations of the method due to the time constraints on the pattern match, we have
possibly missed a match.

References

[1] Yasushi Sakurai, Christos Faloutsos, Masashi Yamamuro: Stream Monitoring under the Time
Warping Distance. ICDE 2007: 1046-1055.

[2] Alice Marascu, Suleiman A. Khan, Themis Palpanas: Scalable Similarity Matching in Streaming
Time Series. PAKDD (2) 2012: 218-230.

http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/f/Faloutsos:Christos.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/y/Yamamuro:Masashi.html
http://www.informatik.uni-trier.de/~ley/db/conf/icde/icde2007.html#SakuraiFY07

 1

Scalable Similarity Matching in Streaming Time Series

Alice Marascu
University of Trento

marascu@disi.unitn.eu

Suleiman A. Khan
Aalto University

suleiman.khan@aalto.fi

Themis Palpanas
University of Trento
themis@disi.unitn.eu

Abstract— Nowadays online monitoring of data streams is essential in many real life
applications, like sensor network monitoring, manufacturing process control, and video
surveillance. One major problem in this area is the online identification of streaming sequences
similar to a predefined set of pattern-sequences.
In this paper, we present a novel solution that extends the state of the art both in terms of
effectiveness and efficiency. We propose the first online similarity matching algorithm based on
Longest Common SubSequence that is specifically designed to operate in a streaming context,
and that can effectively handle time scaling, as well as noisy data. In order to deal with high
stream rates and multiple streams, we extend the algorithm to operate on multilevel
approximations of the streaming data, therefore quickly pruning the search space. Finally, we
incorporate in our approach error estimation mechanisms in order to reduce the number of false
negatives.
We perform an extensive experimental evaluation using forty real datasets, diverse in nature and
characteristics, and we also compare our approach to previous techniques. The experiments
demonstrate the validity of our approach.

Keywords: data stream, online similarity matching, time series

1. Introduction
In the last years, due to accelerated technology developments, more and more

applications have the ability to process large amounts of streaming time series in real
time, ranging from manufacturing process control and sensor network monitoring to
financial trading [1] [2] [3] [4] [5]. A challenging task in processing streaming data is
the discovery of predefined pattern-sequences that are contained in the current sliding
window. This problem finds multiple applications in diverse domains, such as in
network monitoring for network attack patterns, and in industrial engineering for faulty
devices and equipment failure patterns. Previous work on streaming time series
similarity [6] [7] proposed solutions that are limited either by the flexibility of the
similarity measures, or by their scalability (these points are discussed in detail in Section
2).
Motivated by these observations, in this paper we propose a new approach that
overcomes the above drawbacks. First, we observe that in the absence of a time scaling
constraint, degenerate matches may be obtained (i.e., by matching points in the time
series that are too far apart from each other). In order to address this problem, we
introduce the notion of the Continuous Warping Constraint that specifies the maximum
allowed time scaling, and thus, offers only meaningful results.

We propose the first adaptation of the Longest Common SubSequence (LCSS)
similarity measure to the streaming context, since it has been shown that LCSS is more
robust to noise (outliers) in time series matching [8].

In order to enable the processing of multiple streams, we introduce a framework
based on Multilevel Summarization for the patterns and for the streaming time series.
This technique offers the possibility to quickly discard parts of the time series that

 2

cannot lead to a match. Our work is the first to systematically study the required sliding
window sizes of these multilevel approximations, as well as take into account and
compensate for the errors introduced by these approximations. Therefore, we avoid
false negatives in the final results.

Figure 1 is a schematic illustration of our approach. The streaming time series
subsequences included in the current streaming window are summarized using a
multilevel summarization method and the same operation is performed on the
predefined pattern sequences. Then, the different levels of these summaries are
compared using a streaming algorithm with very small memory footprint.

The main contributions of this paper can be summarized as follows.
• We propose the first method that employs the LCSS distance measure for the

problem of time series similarity matching and is specifically designed to operate in
a streaming context.

• We introduce the Continuous Warping Constraint (Sections 3.1.1and 3.1.2) for the
online processing setting in order to overcome the unlimited time scaling problem.

• We describe a scalable framework for streaming similarity matching, based on
streaming time series summarization. We couple these techniques with analytical
results (Sections 3.1.3 and 3.2.2) and corresponding methods that compensate for
the errors introduced by the approximations, ensuring high precision and recall
with low runtimes.

Figure 1: Data stream monitoring for predefined patterns

• Finally, we perform an extensive experimental evaluation with forty real datasets

(Section 4). The results demonstrate the validity of our approach, in terms of
quality of results, and show that the proposed algorithms run (almost) three times
faster than SPRING [9] (the current state of the art).

The rest of the paper is organized as follows. We start by briefly presenting the
background and the related work in Section 2. Section 3 presents our approach and

 3

describes in detail our algorithm. Section 4 discusses the experimental evaluations, and
Section 5 concludes the paper.

2. Background and Related Work

We now introduce some necessary notation, and discuss the related work.
A time series is an ordered sequence of n real-valued numbers T=(t1, t2, …, tn). We
consider t1 the first element and tn the last element of the time series. In the streaming
case, new elements arrive continuously, so the size of the time series is infinite. In this
work, we are focusing on a sliding window of the time series, containing the latest k
streaming values. We also define a subsequence ti,j of a time series T=(t1, t2, …, tn) is
ti,j=(ti, ti+1, …, tj), such that 1≤i≤j≤n. We say that two subsequences are similar if the
distance D between them is less than a user specified threshold ε.

2.1. Distance Measures
The most frequently used distance measure is the Euclidean distance, which computes

the square root of the sum of the squared differences between all the corresponding
elements of the two sequences (Figure 2(a)). The Euclidean distance cannot be applied
on sequences of different sizes, or for element temporal shifts and, in these cases, the
optimal alignment is achieved by DTW (Dynamic Time Warping) [10] (Figure 2(b)).
DTW is an elastic distance that allows an element of one sequence to be mapped to
multiple elements in the other sequence. If no temporal bound is applied, DTW can lead
to pathological cases [11] [12] where very distant elements are allowed to be aligned.
To avoid this problem, temporal constraints can be added in order to restrict the allowed
temporal area for the alignment; the most used constraints are the Sakoe-Chiba band
[13] and the Itakura Parallelogram band [14] (shaded area in Figure 3). The LCSS
measure [8] is also an elastic distance measure that has an additional feature compared
to DTW: it allows gaps in the alignment. This feature can be very valuable in real
applications, since in this way we can model noise, outliers, and missing values (Figure
2(c)).

(a) (b) (c)

 Figure 2: Time series distances: Euclidean (a), DTW(b), and
LCSS (c)

Figure 3: Sakoe-Chiba band (left)
and Itakura Parallelogram (right).

2.2. Similarity Matching
The Euclidean distance is used by [6] for identifying similar matches in streaming

time series. This study proposes a technique, where the patterns to be matched are first
hierarchically clustered based on their minimum bounding envelopes. Since this
technique is based on the Euclidean distance, it requires the sequences to be of the same
size and is rather sensitive to noise and distortion [15]. As a solution, [9] presented the
SPRING algorithm that computes the DTW distance in a streaming data context. This

2 4

8
10
12
14

2 4

8
10
12
14

2 4

8
10
12
14

 4

algorithm allows comparison of sequences with different lengths and local time scaling,
but does not efficiently handle noise (outlier points). We elaborate more on SPRING in
the next subsection.

The warping distance techniques are also studied by [16], who propose the Spatial
Assembling Distance (SpADe), a new distance measure for similarity matching in time
series, which is able to operate incrementally in a streaming environment. However,
Ding et al. [11] showed (based on a large collection of datasets) that DTW, in general,
has better accuracy than SpADe.

Stream-DTW (SDTW) is proposed by [7] with the aim of having a fast DTW for
streaming times series. SDTW is updatable with each new incoming data sequence.
Nevertheless, the experimental results show that it is not faster than SPRING. In [17]
the LCSS distance was used to process data streams, but was not adapted for online
operation in a streaming context, which is the focus of our paper.

Other related works to this topic focused on approximations, thus proposing
approximate distance formula. One example is the method proposed by [18] that uses
the Boyer Moore string matching algorithm to match a sequence over a data stream.
This approach is limited in that it operates with a single pattern and a single stream at a
time. A multi-scale approximate representation of the patterns is proposed by [19] in
order to speed up the processing. Even though the above representations introduce
errors, neither these errors nor the accuracy of the proposed technique are explicitly
studied.

2.3. SPRING Overview
The basic idea of SPRING (for more details see [9]) is to maintain a single, advanced
form of the DTW matrix, called Sequence Time Warping Matrix (STWM). This matrix
is used to compute the distances of all possible sequence comparisons simultaneously,
such that the best matching sequences are monitored and finally reported when the
matching is complete.
Each cell in the STWM matrix contains two values: the DTW distance d(t,i) and the
starting time s(t,i) of sequence (t,i), where t=1,2,…n and i=1,2,…m are the time index
in the matrix of the stream and of the pattern respectively. A subsequence starting at
s(t,i) and ending at the current time t has a cumulative DTW distance d(t,i), and it is the
best distance found so far after comparing the prefix of the stream sequence from time
s(t,i) to t, and the prefix of the pattern sequence from time 1 to i. On arrival of a new
data point in the stream, the values of d(t,i) and s(t,i) are updated using Equations (1)
and (2). A careful implementation of the SPRING algorithm leads to a space
complexity of O(m) and time complexity of O(mn), just like DTW.

d t,i() = at ,bi + dbest , d(t,0) = 0,d(0,i) = !

dbest = min

d t "1,i "1()
d t "1,i()
d t,i "1()

#

$
%%

&
%
%

where :
t = 1,2,…,n
i = 1,2,…,m

(1)

(2)

()
() ()
() ()
() ()

1, 1 1, 1

, 1, 1,

, 1 , 1

best

best

best

s t i if d t i d

s t i s t i if d t i d

s t i if d t i d

− − − − =⎧
⎪

= − − =⎨
⎪ − − =⎩

 5

3. Our Approach
In this section, we present two novel algorithms for streaming similarity matching

called naiveSSM (naive Streaming Similarity Matching) and SSM (Streaming
Similarity Matching).

 The naiveSSM algorithm efficiently detects similar matches thanks to three features:
it constrains the time scaling allowed in the matches, thus, avoiding degenerate
answers; it handles outlier points in the data stream, by using LCSS; and it uses a
special hierarchical summarization structure that allows it to effectively prune the
search space. Although naiveSSM provides good results, it is not aware of the
computation error introduced by the summarization method. SSM takes care of the
computation error and improves the results by using a probabilistic error modeling
feature.

3.1. The naiveSSM Algorithm
3.1.1. CWC Bands (Continuous Warping Constraint bands)
We observe that the simple addition of a Sakoe-Chiba band for solving the problem of
degenerate matches would not be enough, since not all matching cases would be
detected. Figure 4 illustrates this idea; two sequences situated outside of the band, but
very near of its bounds, are not detected as matching because they are outside of the
allowed area. The solution we propose is a novel formulation of Sakoe-Chiba band,
which we call Continuous Warping Constraint (CWC band).

CWC band consists of multiple succeeding overlapping bands where each of these
bands is bounding one possible matching sequence (Figure 5). More precisely, we
propose to associate a boundary constraint to each possible matching, and not a general
allowed area (as in Figure 4). In this way, the CWC band provides more flexible bounds
that follow the matching sequences behavior. Figure 5 shows three CWC bands. The first
matching sequence (dark grey) falls within the first CWC band, while the second
sequence falls in the third CWC band, hence both being successfully detected as
matching. A single CWC band is an envelope created around the pattern (the left
allowed time scaling value being equal to the right allowed time scaling value); the size
of the envelope is a user-defined parameter. The CWC bands have the additional
advantage that they can be computed with negligible additional cost.

Figure 4: Sakoe-Chiba band (shaded area),
and two candidate matching sequences (dark
grey) falling outside the constraint envelope.

Figure 5: The same two candidate matching
sequences as Figure 4, and three overlapping CWC
bands.

The CWC bands can be added to the SPRING algorithm, on top of the DTW. Due to

lack of space, in the following, we only discuss the application of CWC on top of
streaming LCSS.

 6

3.1.2. LCSS in a Streaming Context
LCSS provides a better support for noise compared to DTW, as we mention in Section
2. Equation (3) shows the LCSS computation of two sequences, A and B, of length n
and m, respectively. The parameter γ is a user-defined threshold for the accepted
distance. We now derive a novel formula for the streaming version of LCSS.

LCSS(A, B) =

0 if A or B is Empty()
1+ LCSS(at!1,bi!1) if dist(at ,bi) < "()
max[LCSS(at!1,bi), otherwise

LCSS(at ,bi!1)]

#

$

%
%

&

%
%

where t = 1,2,...,n and i = 1,2,...,m

(3)

Since LCSS and DTW have similar matrix-based dynamic programming solutions

(for the offline case), one may think that they also share the idea of the STWM matrix,
thus, leading to a simple solution of replacing DTW with LCSS in the SPRING
framework. Unfortunately, this is not a suitable solution: simply plugging LCSS
Equation (3) into SPRING introduces false negatives and degenerate time scaled
matches. The false negatives occur because the otherwise clause in Equation (3) selects
the maximum of the two preceding sequences irrespective of the portion of the δ time
scaling they have consumed. Therefore, it is possible that the selected sequence may
have a higher LCSS value than the discarded sequence, but has already exceeded its
allowed time scaling limit. The problem is that even though such a sequence will never
become a matching sequence (because of its length), it may prevent a valid sequence
from becoming a match.

To address this problem, we formulate the new CWC band constrained LCSS
Equation (4) (due to lack of space, we omit the intermediate steps of deriving these new
equations). In Equation (4), δ is a user defined parameter defining the maximum time
scaling limit for the CWC bands, which corresponds to the size of the bands. The LCSS
count is incremented only if the current pattern and stream value match, that is, they
have a point to point distance less than the threshold γ, and the preceding diagonal
LCSS falls within the CWC band (i.e., belongs to the allowed envelope area). Equation
(5) describes the corresponding update of the starting time.

l(t,i) =

1+ l(t !1,i !1) if
dist at ,bi() < " #

t ! s(t !1,i !1)+1()! i $ %

&

'
(
(

)

*
+
+

max

l(t !1,i), t ! s(t !1,i)+1()! i $ %(),
l(t,i !1), t ! s(t,i !1)+1()! i $ %(),
l(t !1,i !1), t ! s(t !1,i !1)+1()! i $ %()

&

'

(
(
(
(

)

*

+
+
+
+

otherwise

-

.

/
/
/
/

0

/
/
/
/

l(t,0) = 0; l(0,i) = 0 where t = 1,2,…,n; i = 1,2,…,m

(4)

(5)

3.1.3. Multilevel Summarization

When trying to identify candidate matches of a given pattern in a streaming time series,
we are bound to waste a significant amount of computations on testing subsequences

()
()
()

(1, 1) (,) (1, 1)

(,) (1,) (,) (1,)

(, 1) (,) (, 1)

s t i if l t i l t i

s t i s t i if l t i l t i

s t i if l t i l t i

− − = − −⎧
⎪

= − = −⎨
⎪ − = −⎩

 7

that in fact cannot be a solution. In this subsection, we describe how we can effectively
prune the search space by using a multilevel summarization structure on top of the
streaming time series. Figure 6 illustrates the idea of a multilevel hierarchical summary
(levels 1 and 2 in this figure), depicted in black-colored lines, of a streaming time series
(level 0), depicted in black-colored points.
In this study, we use PAA1 [20] as a summarization method, because of its simplicity,
effectiveness, and efficiency in a streaming environment. However, other
summarization methods can also be used. The algorithm operates in an incremental
fashion. It processes the incoming values in batches and waits till the number of data
points received is sufficient to build a complete new top level approximation segment,
at which point the approximations of all levels are computed at once.

The benefit of employing this hierarchical summary structure is that the similarity
matching can be executed on the summaries of the streaming time series, instead of the
actual values, whose size is considerably larger. If the algorithm finds a candidate
match at a high level of approximation, then it also checks the lower levels, and if
necessary the actual stream as well.

Note that since we are using an elastic distance measure (i.e., LCSS), it is possible
that the matching at lower approximation levels, and especially at the actual pattern or
stream, may yield different starting and ending points. If not treated properly, this
situation may lead to false negatives.

Figure 6: Multilevel Summarization

Figure 7: Sequence Placement in Streaming

Window at t δ

First of all, the window size must be at least as big as the searched pattern. Then,
since we use elastic matching, a candidate matching sequence can be extended up to δ
data points in both directions (i.e., to the left and right), which gives the following
inequality for the window size (refer to area “A” in Figure 7): WindowSize ≥
patternLength + 2δ. When a candidate matching sequence is detected, we must
determine its locally optimal neighbour. For this purpose, and since δ is the maximum
allowed time scaling, the window has to contain an extra δ data points (depicted as “B”
in Figure 7). Finally, one more data point is needed for the optimality verification of the
candidate sequence. The above statements lead to the following inequality for the
window size: WindowSize = patternLength +3 δ +1.

1 PAA (Piecewise Aggregate Approximation) divides the time series into N equal segments and approximates
each segment by its average value.

 8

3.2. SSM algorithm
3.2.1. Probabilistic Error Modelling

As all approximations result in loss of information, multilevel summarization is also
expected to lead to some loss of information. Therefore, it is highly probable that the set
of candidate matches found at the highest level may not contain all the actual matches.
One way of addressing this problem is by lower bounding the distance of the time
series. Even though this is possible, this approach would lead to a computationally
expensive solution. Instead, we propose an efficient solution based on the probability
with which errors occur in our distance computations.

We randomly choose a sample of actual data point sequences from the streaming
window. For all the sequences in the sample, we compute the error in the distance
measure introduced by the approximation (by comparing to the distance computed
based on the raw data). Then, we build a histogram that models the distribution of these
errors, the Error Probability Distribution (EPD). Evidently, errors are smaller for the
lower levels of approximation, since they contain more information, and are
consequently more accurate than the approximations at higher levels.

The pruning decision of a candidate matching sequence is based on the EPD: we
define the error-margin as 1-3σ (standard deviations) of the EPD. Intuitively, the error-
margin indicates the difference that may exist between the distance computation based
on the summarization levels and the true distance. Using an error-margin of 3σ, we
have a very high probability that we are going to account for almost all errors.

Then, if the distance of a candidate sequence computed at one of the approximation
levels is larger than the user-defined threshold ε, but less than ε + error-margin, this
sequence remains a candidate match (and is further processed by the lower
approximation levels).

3.2.2. Change-Based Error Monitoring

The data stream characteristics change continuously over time and EPD must reflect
them. For this purpose, we set up a technique allowing the effective streaming
computation of EPD. The most expensive part of the EPD computation is the
computation of the LCSS distance between the pattern and all the samples. The
continuous computation of EPD can be avoided by setting up a mechanism that will
trigger the EPD re-computation only when the data distribution changes significantly.

In the work, we propose to use a technique that is based on the mean and variance of
the data. This technique was proven to be effective [21] [22] and can be integrated in a
streaming context. Though, more complex techniques for detecting data distribution
changes can be applied as well [23].

Our algorithm operates as follows. When sufficient data arrives in the stream
window, the EPD is constructed. Then the mean and the variance of the original
streaming data are computed and registered together with the error margins. We
consider that the EPD needs to be updated (i.e., reconstructed), only when the mean and
variance of the current window changes by more than one standard deviation compared
to the previous value. We will call this technique change-based error monitoring.

The only remaining question to answer is how often to sample. If we look for a
pattern of size k within a streaming window of size n, there are (n – k + 1) possible
matching sequences for the first element of the window, (n – k + 1 - 1) possible
matching sequences for the second element of the window and so on until there is 1

 9

single possible matching sequence for the n-k element of the window. Therefore there
are (n–k+1)+(n–k+1-1)+(n–k+1-2)+...+1=(n–k+1)*(n–k+2)/2 possible matching
sequences.

Given the large number of possible matching sequences, even a very small sampling
rate (i.e., less than 1%) can be sufficient for the purpose of computing EPD. In the
following section, we experimentally validate these choices.

4. Experimental Evaluation
All experiments were performed on a server configured with 4xGenuine Intel Xeon 3.0
GHz CPU, and 2 GB RAM, running the RedHat Enterprise ES operating system. The
algorithm was coded in Matlab.

We used forty real datasets (for details, see [24]) with diverse characteristics from the
UCR Time Series Repository [25], and treated them as streams. Patterns are randomly
extracted from the streams, and the experiments are organized as follows. A dataset
consists of several streams and several patterns. An experiment carried out on a single
dataset means that each pattern in that dataset is compared with each stream in the same
dataset. All experiments are carried out with patterns of length 50 (unless otherwise
noted), and we report the averages over all runs, as well as the 95% Confidence
Intervals (CIs).

We use precision and recall to measure accuracy: precision is defined as the ratio of
true matches over all matches reported by the algorithm; recall is the ratio of true
matches reported by the algorithm over all the true matches. The matches produced by
SPRING with CWC bands serve as the baseline for all our experiments.

4.1. Approximate Similarity Matching
We first examine the performance of the naiveSSM algorithm. In this case, we use up

to 5 levels for the multilevel summarization. The performance when using only some of
these 5 levels of the summarization is lower (these results are omitted for brevity). This
is because level skipping results in more matches to be processed at lower levels, where
processing is more expensive. We also did not observe any significant performance
improvements when considering more than 5 levels.

Figure 8 shows the precision, recall and runtime of naiveSSM as a function of the
pattern size, which ranges from 50 to 500 data points. We report results for naiveSSM
for the cases where we have 3 (PAA3) and 5 (PAA5) approximation levels. We observe
that naiveSSM scales linearly with the length of the patterns. The precision and recall
results show that even though precision remains consistently high (averaging more than
98%), recall is rather low: naiveSSM using LCSS averages a recall of 90%.

These results confirm that the errors introduced by the approximation may lead to
some matches being missed. Nevertheless, precision is high, because every candidate
match is ultimately tested using the raw data as well. Finally, the results show that using
5 levels for the summarization leads to higher accuracy, but also higher running times
(Figure 8(right)).

4.2. Compensating for Approximation Errors
We now present results for SSM, which aims to compensate for the errors introduced

by the multilevel summarization, and thus, lead to higher recall values.

 10

Figure 8: Precision (left), Recall (middle), and Run Time (right) for different variants of naiveSSM.

Table 1 shows the precision and recall numbers achieved by SSM with continuous

and with change-based error monitoring, as a function of the error-margin. The results
show that precision is in all cases consistently above 99%, while recall is over 95%, a
significant improvement over naiveSSM. We also observe that SSM with change-based
error monitoring performs very close to SSM with continuous monitoring (which is
much more expensive). This validates our claims that the change-based error
monitoring is an effective and efficient alternative to continuous error monitoring for
producing high quality similarity matches. Finally, we observe that by increasing the
error-margin from 1σ to 3σ, recall is only slightly improving. As expected, precision is
unaffected.

We now study the role of the sampling rate on performance. Remember that this is
the rate at which we sample the stream sequences during change-based error-
monitoring, for computing the distance error introduced by the approximation and for
building the EPD. In these experiments, we used an error-margin of 1σ, and sampling
rates between 0.1% and 10%. Figure 9 presents the runtime of SSM as a function of the
sampling rate. The results demonstrate that SSM with change-based error monitoring
(curve with black squares) runs almost three times faster than the current state of the art
(red, constant curve): SPRING (for fairness, with LCSS and CWC bands). Note that the
time performance of SSM with continuous error monitoring (curve with dark blue
circles) is better than only for very low sampling rates (0.1%).

It is also interesting to note that SSM performs very close to the lower bound
represented by the naiveSSM algorithm (light grey curve), which does not use any error
monitoring at all, and suffers in recall, averaging less than 90% (refer to Figure 8). In
contrast, SSM achieves a significantly higher recall value, more than 95% (refer to
Table 1). We note that the precision and recall of SSM with change-based monitoring
remain stable, 99% and 96%, respectively, as the sampling rate varies between 0.1%-
10% (results omitted for brevity). Overall, we can say that the SSM algorithm with
change-based error monitoring is not only time efficient, but also highly accurate even
when the error margin is small (1σ).

In the final experiment, we measure the number of distance computations performed
by SSM with change-based error monitoring, using 3 levels of summarization.
(Changing the sampling rate between 0.1%-10% does not affect the results.) We
measured separately the number of computations for each level of summarization,
including level 0: the raw data. The results show that the largest percentage of

 11

computations, 66%, occur at level 0 (18% at level 1, 12% at level 2, and 4% at level 3).
These results signify that future attempts to further improve the runtime of the
algorithm should focus on techniques for more aggressive, early (i.e., at higher levels)
pruning of the candidate sequences.

 SSM
continuous

SSM
change-based

error-
margin Pr R Pr R

1σ 0.99 0.95 0.99 0.95
2σ 0.99 0.96 0.99 0.96
3σ 0.99 0.97 0.99 0.96

Table 1: Precision and Recall for SSM
with continuous and change-based error
monitoring, as a function of the error
margin.

Figure 9: Runtime vs Sample Percentage for SSM

5. Conclusions
In this work, we propose a new algorithm, able to efficiently detect similarity

matching in a streaming context that is both scalable and noise-aware. Our experiments
on forty real datasets show that the proposed solution runs (almost) three times faster
than previous approaches. At the same time, our solution exhibits high accuracy
(precision and recall more than 99% and 95%, respectively), and ensures that we do not
obtain degenerate answers, by employing the novel CWC bands.

6. Acknowledgements
This research was partially funded by FP7 EU IP project KAP (grant

agreement no. 260111), and by Erasmus Mundus school EuMI (SAK).

7. References

[1] Airoldi E., Faloutsos C., Recovering latent time-series from their observed sums: network
tomography with particle filters, KDD 2004

[2] Borgne Y.-A. L., Santini S., Bontempi G., Adaptive model selection for time series
prediction in wireless sensor networks. Signal Process, 87(12):3010–3020 2007

[3] Zhu Y., Shasha D., Statstream: statistical monitoring of thousands of data streams in real
time, VLDB 2002

[4] Camerra A., Palpanas T., Shieh J., Keogh E. iSAX 2.0: Indexing and Mining One Billion
Time Series, ICDM, 2010

[5] Dallachiesa M., Nushi B., Mirylenka K., Palpanas T. Similarity Matching for Uncertain
Time Series: Analytical and Experimental Comparison, QUeST, 2011

[6] Wei, L., Keogh, E. J., Herle, H. V., and Neto, A. M. Atomic Wedgie: Efficient Query
Filtering for Streaming Times Series. ICDM 2005, 490-497

[7] Capitani, P., and Ciaccia, P. Warping the time on data streams, Data and Knowledge
Engineering (62) 2007, 438–458

 12

[8] Vlachos, M., Gunopulos, D., and Kollios, G. Discovering similar multidimensional
trajectories. ICDE 2002, 673–684

[9] Sakurai, Y., Faloutsos, C., and Yamamuro, M. Stream Monitoring under the Time Warping
Distance. ICDE 2007

[10] Ratanamahatana, C. A., and Keogh, E. Everything you know about Dynamic Time Warping
is Wrong, Third Workshop on Mining Temporal and Sequential Data, 2004

[11] Ding, H., Trajcevski, G., Scheuermann, P., Wang, X., and Keogh, E. Querying and Mining
of Time Series Data: Experimental Comparison of Representations and Distance Measures,
VLDB 2008

[12] Stan Salvador and Philip Chan, FastDTW: Toward Accurate Dynamic Time Warping in
Linear Time and Space, in Intelligent Data Analysis 11(5), 2007 561-580

[13] Sakoe, H. and Chiba, S. Dynamic programming algorithm optimization for spoken word
recognition, ASSP 1978

[14] Itakura, F. Minimum Prediction Residual Principle Applied to Speech Recognition, ASSP-
23, 1975, 52-72

[15] Agrawal, R., Faloutsos, C., and Swami, A. N. Efficient Similarity Search in Sequence
Databases. FODO 1993, 69-84

[16] Chen, Y., Nascimento, M. A., Ooi, B. C., and Tung, A. K. H. SpADe: On Shape-based
Pattern Detection in Streaming Time Series. ICDE 2007

[17] Marascu A., Masseglia F., Mining Sequential Patterns from Data Streams: a Centroid
Approach, J. Intell. Inf. Syst. Volume 27, number 3, 2006, pages 291-307

[18] Harada, L. Detection of complex temporal patterns over data streams. Information Systems
29(6) 2004, 439–459

[19] "Lian, X., Chen, L., Yu, J. X., Wang, G., and Yu, G. Similarity Match Over High Speed
Time-Series Streams. ICDE 2007".

[20] Keogh E. J., Chakrabarti K., Pazzani M.J., and Mehrotra S., Dimensionality Reduction for
Fast Similarity Search in Large Time Series Databases. Knowl. Inf. Syst., 3(3), 2001

[21] Babcock, B., Datar, M., and Motwani, R. Sampling From a Moving Window Over
Streaming Data, SODA, 2002

[22] Babcock, B., Datar, M., Motwani, R., and O’Callaghan, L. Maintaining Variance And k-
medians Over Data Stream Windows PODS, 2003, 234–243

[23] Ben-David, S., Gehrke, J., and Kifer, D. Identifying Distribution Change in Data Streams. In
VLDB, Toronto, ON, Canada, 2004

[24] Detailed list of datasets used: http://disi..unitn.eu/~themis/publications/pakdd12-ssm-
appendix.pdf.

[25] UCR: Time Series Data Archive. http://www.cs.ucr.edu/~eamonn/time_series_data/

