
T-Store: Tunable Storage for Large Sequential Data

Kostas Zoumpatianos1,2, Stratos Idreos1 Themis Palpanas2

1 Harvard University 2 Paris Descartes University

Data Layout

Design Continuum: From Fixed to Hybrid Layouts

Optimization

T-Store Architecture Results

Data Series

Sequences of points ordered
over a dimension

Time

Position

Astronomy

N
eu

ro
sc

ie
n

ce

Physics

Finance IoT

Paleontology

Biology
(i.e., DNA

sequencing)

Ordered by

position

Ordered by

sequence id

positions 105-210
for	all sequences

Q1
all positions

for	sequence	90
Q2

100 ... 210 250 … 800 850 … 995

20 … 16 35 … 90 38 … 74

900 78 54 31 … 33 42 68 55

2.4 4.6 7.6 9.8 … 2.1 3.1 7.2 6.6

Position

Sequence	ID

Value	1

Value 2

In
d
ex

100 105 … 60 80 … 1 … 100

1 1 … 2 2 … 90 … 90

33 32 … 66 76 … 95 … 45

1.2 1.7 … 2.8 2.6 … 9.7 … 9.5

Position

Sequence	ID

Value	1

Value	2

In
d
ex

Seq	1

Seq	2

Seq	90

…
Result-set

Positions	105-200

Seq	90

All	positions

Result-set

How to achieve the best layout
for a given workload and a given

set of data series?

Sequence
first

Position
first

Groups of
series

There is no perfect storage scheme

Sequence Identifier Range: 35 - 50Sequence Identifier Range: 15 - 35Sequence Identifier Range: 1 - 15

Big Group Group 1 Group 3Group 2

Index on

positions

Index on

positions

Index on

positions

Index on

positions

SequenceId

Position 10 11 12 12 14 …

1 1 2 1 3

Value …

Position-first layout

Index on

sequence identifiers

SequenceId

Position 5 8 9 9 10

15 15 16 17 31

Value …

Group-of-series layout

1 2 5 9 10

18 21 35 19 35

…

3 8 9 9 10

20 20 32 33 31

…

15, 16, 17, 31
18, 19, 21, 35

35 35 35 35 35

2 20 31 40 51

…

50 50 50 50 50

10 20 31 40 51

…

…

Index on

sequence identifiers

20, 31, 32, 33

Sequence-first layout

File
Chunk 1

File for

Group 1

File for
Group2

File for
Group 3

File
Chunk 1

File
Chunk n

…File
Chunk n

…Disk

Main-memory

Series sorted to minimize overlap

in positions acr oss files

Bitmap-based partition/query intersection contr ol

1-15 15-35 35-50

SP S

P P P

Figure 6: T-Store parti t ioning

positions of di erent sequences into the same pages. Nev-

ertheless, such a choice gives bene t to queries that need

to access multiple series. On top of this array, a clustered

range-scan optimized index structure can be constructed

and maintained for the positions. T-Store uses a B+Tree on

positions, with support for duplicate keys. During query

answering, the B+Tree is used to lter valid positions. The

result is then joined with the list of sequences that are part

of theuser’s query. This is visualized in Figure 6 on the left.

3.1.2 Sequence-first Organization (SF). The second data lay-

out orders data series by sequence identi er. This e ectively

clusters all points of each series together. On top of this lay-

out weconstruct an index on thesequenceidenti ers, to help

us nd the rst point of each sequence. This index keeps

one entry per series. A binary search can be subsequently

performed to identify the relevant position range for each

series. This layout can be seen in Figure 6 on the right.

3.1.3 Groups-of-SequencesOrganization (GOS). Finally, in

between these two extremes we construct a layout that con-

sists of multiple smaller groups of series that are ordered

by position. Each one of these groups follows the same lay-

out as the Position- rst data layout. We now maintain an

index that allows us to retrieve the corresponding group for

each sequence. In addition to that, we also maintain a range

optimized index for the positions of each group. When a

query arrives, we retrieve all valid groups and then probe

the positions index of each group to lter the relevant range.

This layout can be seen in Figure 6 in the middle.

3.2 Prel iminary De nitions

A workload Q = {q1, ...,qm } is a set of m queries, where

each query ltersacertain rangeof positions for someof the

Term Description

D = {si } A set of data series.

si = {< pj ,v j >} 2 D A single data series, which is a set

of position value tuples < pj ,v j >.

qi =< p
qi
st a r t , p

qi
en d

, sqi > A query that lters a given position

range [p
qi

st ar t ,p
qi

end
], for a given set

of data seriessqi ✓D.

Q = {qi } A workload of queries.

selseq(qi) = |sqi | The number of sequences accessed

by a query qi .

selpt s(qi) The result-set size of query qi .

sel D
pt s(qi) The number of points of all se-

quences in D that are within the

query speci ed range.

rsi ze The size of a database record.

psi ze The page size.

cl at Theseek latency of thesystem (sec).

ct hr The scan throughput (bytes/sec).

Table 1: Table of terms

sequences. Formally, qi =< p
qi

st ar t ,p
qi

end
,sqi >, wherep

qi

st ar t

is the starting position, p
qi

end
is the end position, and the

set sqi describes theset of sequences that this query needs

to retrieve. With the notation Q(x) = {qi 2 Q|x 2 sqi } ,

wedenote the subset of workload Q, which contains all the

queriesthat need to accesstheserieswith idx. Given aquery

qi 2 Q, we de ne the set of terms listed in Table 1.

In the next subsection we show how we can model the

cost of answering each query using any given data layout.

Hybrid store: supports three different data layouts simultaneously
• Position-first
• Sequence-first
• Groups-of-series (sorted position-first)

Storage advisor: choses the appropriate layout for each series
• Constructs a set of features that describe a user workload
• Partitions by solving an optimization problem using modeling

Smart grouping: Constructs groups-of-series for various applications
• Data mining (i.e., similarity search) by grouping similar shapes
• Data ingestion by grouping series that are updated together

from a group-of-series layout. The reason is that such a lay-

out would allow usto avoid worst cases, even in thepresence

of extreme access patterns, gracefully handling mixed work-

loads. To quantify these notions in a workload, we de ne:

“loneliness factor” and “series selectivity factor.”

3.4.1 Loneliness Factor. This is used to identify series that
areusually accessed alone by queries. Given aset of seriesD,
and the subset of queries Q(x) ✓Q that touch series x 2 D,
wecompute the“loneliness factor” (LF) for each query/series
pair,asfollows. For agiven seriesx 2 D,and query qi 2 Q(x),
this is the ratio of thenumber of all series in D over theones
accessed by the query. This is formally de ned as follows:

LF(x , qi) =
|D |

|sqi |
(7)

The expected value of this factor, for a series x, over the
workload that touchesthisseries, isthe“Expected Loneliness
Factor of x” (ELF). This is formally de ned as follows:

ELF(x) = E
qi 2Q (x)

"
|D |

|sqi |

#

(8)

To generalize, the larger theELFvalue, themoreother series

are co-accessed with a given seriesx.
Another important aspect of LF however, is how much it

varies for a given workload. When LF has a low variance,
a series is accessed consistently in the same way. On the
contrary, when it hasahigh variance, asequence isaccessed
both in large groups as well as alone. Thus, we should avoid
placing this series in PF or SF. To capture that, we use the
“Variance of the Loneliness Factor” (VLF), de ned as follows.

V LF(x) = V ar
qi 2Q (x)

"
|D |

|sqi |

#

(9)

3.4.2 Series Selectivity Factor. The second feature tries to
capture how much of the total positions of a given series
are accessed by the workload that touches it. For a given
series x, and a given query qi , this is the ratio of its selected
pointsover itstotal points. Wecall this, the“SeriesSelectivity
Factor” (SSF) of this series/query pair. It is formally de ned
as follows.

SSF(x, qi) =
number of pointsof seriesx selected by qi

total pointsof seriesx
(10)

The expected valueof this factor, for agiven seriesx, over
a workload that touches it Q(x) (ESF), is de ned as follows.

ESF(x) = E
qi 2Q (x)

[SSF(x, qi)] (11)

The higher this value, the larger the percentage of a series’
points is accessed in every query. As a result, this query
should be stored alone. We need, however, to also take into
consideration the variance of this value. The reason is that
it allows us to identify if access patterns are consistent. This
assures that we can place the series in one of the extreme
data layouts. This is de ned as follows.

V SF(x) = V ar
qi 2Q (x)

[SSF(x , qi)] (12)

Sequence-first

Position-first

ELF

ESF

Series usually
accessed alone

Series usually accessed to their entir ety

le

se

Groups-of-series

Position-first

Sequence-first

VLF

VSF

Uniform
access

lv

sv

Variable
access

S7

S9

S16

S10

S1

S11

S12

S3

S4

S14

S8
S5

S2

S6

S19
S7

S9

S16

S10

S1S11

S12 S3

Series
S1 - S16

Figure 7: Parti t ioning series to layouts

3.4.3 Partitioning Optimization Problem. Our intuition is

that series with large loneliness factor and large percentage

of positions selected should be accessed alone. On the other

hand,serieswith small lonelinessfactor andsmall percentage

of positions selected should form large groups of position

ordered groups. While in all cases, when variances are high,

sequencesshould bestored in agroups-of-series format. This

can be seen as a space partitioning problem, where we try

to construct the hyper-rectangles that will partition the four

variables, e ectively de ning which data will go to which

layout. This intuition is visualized in Figure 7.

SeriesSubsets. Topartition theseries,weneedtoattach sub-

setsof theseries to di erent sub-spaces of our 4-dimensional

optimization space using thresholds that re ect our intu-

itions. Given threshold values: se,sv for ESF and VSF, and

threshold values le, lv for ELF and VLF, these subsets are

de ned as follows:
Series stored in the PF layout are retrieved as follows.

DPF (S, se, sv , le, lv) =

{x 2 D |(V LF(x) lv ^ V SF(x) sv)

^ (ELF(x) > le _ ESF(x) > ss)}

(13)

Series stored in the GOSlayout are retrieved as follows.

DGO S(S, se, sv , le, lv) =

{x 2 D |(V LF(x) > lv _ V SF(x) > sv)}
(14)

Series stored in the SF layout are retrieved as follows.

DSF (S, se, sv , le, lv) =

{x 2 D |(V LF(x) lv ^ V SF(x) sv)

^ (ELF(x) le ^ ESF(x) ss)}

(15)

Our Solution: Hybrid Layouts with T-Store

Cost Modelling
Optimization

ProblemSeries Selectivity Factor. Captures how much of the
total positions of a series are accessed by a query X
that touches it. We compute this as follows:

points of series X selected by Q

points of series X

Position-first data layout

Sequence-first
data layout

Expected

Variance

Fo
r

a
gi

ve
n

 w
o

rk
lo

ad

Solution 1:

Loneliness Factor. Used to identify series usually
queried in isolation. For a query Q that touches a
set of series that also includes series X:

series in database

series accessed by Q

LF(Q, X) =

Solution 2:

Solution 1: Solution 2:

DBMS Performance

Current Systems

Choose a fixed layout without
considering the workload

Moreover, all series are stored
in the same way since layouts

are applied globally to all series

SF(Q, X) =

Funded by the European Union’s Horizon 2020 research and innovation program under grant agreement NESTOR (Marie Curie #748945).

T-Store outperforms static layouts by intelligently partitioning data series
and storing them using the appropriate data layout

FSMP: Part of series for which the workload that
touches few series and many positions

MSFP: Part of the series for which workload that
touches many series but few positions

MIX: Part of the series for which both
access patterns are exhibited

T-Store identifies the optimal data layout for each query

