T-Store: Tunable Storage for Large Sequential Data

Kostas Zoumpatianos^{1,2}, Stratos Idreos¹ Themis Palpanas²

¹ Harvard University ² Paris Descartes University

There is **no perfect** storage scheme

Design Continuum: From Fixed to Hybrid Layouts

How to achieve the best layout for a given workload and a given set of data series?

Current Systems

Choose a fixed layout without considering the workload

Moreover, all series are stored in the same way since layouts are applied globally to all series

Our Solution: Hybrid Layouts with T-Store

Hybrid store: supports three different data layouts simultaneously

- Position-first
- Sequence-first
- Groups-of-series (sorted position-first)

Storage advisor: choses the appropriate layout for each series

- Constructs a set of features that describe a user workload
- Partitions by solving an optimization problem using modeling

Smart grouping: Constructs groups-of-series for various applications

- Data mining (i.e., similarity search) by grouping similar shapes
- Data ingestion by grouping series that are updated together

Optimization

Loneliness Factor. Used to identify series usually queried in isolation. For a query Q that touches a set of series that also includes series X:

Series Selectivity Factor. Captures how much of the total positions of a series are accessed by a query X that touches it. We compute this as follows:

T-Store Architecture

Results

Position-first Sequence-first T-Store (H) 1 1008-scale 10-2 10-4 30 35 40 45 50

Query #