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Abstract—Similarity search is a core operation of many critical
data science applications, involving massive collections of high-
dimensional objects. Similarity search finds objects in a collection
close to a given query according to some definition of sameness.
Objects can be data series, text, multimedia, graphs, database
tables or deep network embeddings. In this tutorial, we revisit
the similarity search problem in light of the recent advances
in the field and the new big data landscape. We discuss key
data science applications that require efficient high-dimensional
similarity search, we survey the state-of-the-art high-dimensional
similarity search approaches and share surprising insights about
their strengths and weaknesses, and we discuss the challenges
and open research problems in this area.

I. INTRODUCTION

Similarity search aims at finding objects in a collection
that are close to a given query according to some definition
of sameness. It is a fundamental operation that lies at the
core of many critical data science applications [62]. In data
integration, it has been used to automate entity resolution [29]
and support data discovery [88]. It has powered recommender
systems of online billion-dollar enterprises [78] and enabled
clustering [14], classification [68] and outlier detection [11],
[12], [15] in domains as varied as bioinformatics, computer
vision, security, finance and medicine. Similarity search has
also been exploited in software engineering [3] to automate
API mappings and predict program dependencies, and in
cybersecurity to detect intrusions and malware [28].

This problem has been studied heavily in the past 25 years
and will continue to attract attention as massive collections
of high-dimensional objects are becoming omnipresent in
various domains [63]. Objects can be data series, text, images,
audio and video recordings, graphs, database tables or deep
network embeddings. Similarity search over high-dimensional
objects is often reduced to a k-Nearest Neighbor (k-NN)
problem such that the objects are represented using high-
dimensional vectors and the (dis)-similarity between them is
measured using a distance. Some studies [1], [10] have argued
that NN search is not meaningful for a number of high-
dimensional datasets due to the concentration of distances
(a.k.a. the curse of dimensionality). However, these conclu-
sions were based on over-restrictive assumptions such as data
being identical and independently distributed (i.i.d.) in each
dimension, dimensionality being the only factor determining
meaningfulness and an asymptotic analysis of dimensionality
growing to infinity. In fact, other studies have shown that

high-dimensional NN search is meaningful for non-i.i.d data,
data with low intrinsic dimensionality and for a variety of
real world datasets [39]. The importance and relevance of NN
search in high-dimensions is further evidenced by a large and
growing body of research [30], [31].

High-dimensional similarity search is hard, because objects
often contain 100s-1000s of dimensions. For large datasets, the
cost to compare a query to all objects in the collection becomes
prohibitive both in terms of CPU and I/O. Similarity search al-
gorithms can either return exact or approximate answers. Exact
methods are expensive while approximate methods sacrifice
accuracy to achieve better efficiency. We call methods that do
not provide any guarantees on the results ng-approximate, and
those supporting guarantees on the approximation error, δ-ε-
approximate methods, where ε is the approximation error and
δ, the probability that ε will not be exceeded. When δ = 1,
a δ-ε-approximate method becomes ε-approximate, and when
ε = 0, an ε-approximate method becomes exact.

This tutorial covers the data science applications that re-
quire efficient high-dimensional similarity search, provides an
overview of the state-of-the-art exact and approximate high-
dimensional similarity search approaches and discusses the
challenges and open research problems in this domain.

II. DATA SCIENCE APPLICATIONS

Data integration. Similarity search is used by data integration
tools to facilitate a variety of tasks. Among others, it is used
over tuple embeddings for entity resolution [29], and over
schema embeddings for data discovery [59].
Recommender Systems. Similarity search is used in recom-
mender systems to predict the interest of a user for a new item.
Item embeddings are learned from user-item interactions, and
used to recommend movies [27] and products [78].
Information Retrieval. Similarity search is used in informa-
tion retrieval for finding similar multimedia objects and copy
detection in document [58], and video [72] collections.
Software Engineering. Code embeddings have been proposed
to represent arbitrary snippets of code [3], and can be used to
predict software dependencies and code clones.
Cybersecurity. Similarity search has supported critical cy-
bersecurity operations, such as profiling network usage, and
detecting intrusions and malware [28].
Outlier Detection. Techniques based on similarity search
define outliers as the items with the largest distance to their
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Fig. 1. Taxonomy of similarity search methods.

NNs, and have been applied to find land mines in satellite
images [15] and discords in data series [54].
Classification. Similarity-based classification (e.g., k-NN
Classifier) is used in a variety of domains, such as bioinfor-
matics for protein classification [4], and remote sensing [68].
Clustering Similarity search has been used for clustering by
finding the k closest neighbors around a given point [14].

III. STATE OF THE ART AND FUTURE OPPORTUNITIES

Similarity search has been studied in the past 25 years
by different communities often using diverse and conflicting
terminology. We present a unified terminology and a taxonomy
(Fig 1; non-exhaustive) for similarity search techniques [32],
[33], in order to facilitate further work in this area.

Exact techniques guarantee correct results at the expense
of efficiency and footprint. The research community has
developed exact approaches for generic high-dimensional vec-
tors [9], [23], [34], [81] (for an exhaustive survey, see [73])
and specific ones for data series [2], [16], [17], [19]–[21], [46],
[48]–[50], [52], [53], [60], [64]–[67], [70], [71], [75], [76],
[80], [82], [84]–[86], [89]. We discuss, contrast and compare
these techniques.

We also observe that their query answering times are still
not satisfactory for interactive analytics. A promising research
direction is to equip exact algorithms with progressive query
answering so that they return progressive estimates of the
final answer with probability guarantees, supporting interactive
exploration and fast decision making [38].

Since exact similarity search is expensive, approximate
techniques have been proposed to improve search efficiency
at the expense of accuracy. The key research problem in
approximate similarity search is making the right trade-offs
between accuracy, efficiency and footprint. We note that sev-
eral of the data series techniques for exact query answering
that we mentioned above, also support (the different flavors
of) approximate search, which we discuss below.
Approximate Search With Guarantees. δ-ε-approximate
search dates from 1998 [41] and gave rise to a rich family of

LSH algorithms [79], which solve the problem in sub-linear
time, for δ < 1. The main idea is that two neighbors in a
high dimensional space will remain in close proximity when
projected to a lower dimensional space. There exist many
variants of LSH, either proposing different hash functions to
support particular similarity measures [13], [18], [24], [36], or
improving the theoretical bounds on query accuracy (i.e., δ or
ε), query efficiency or the index size [40], [55], [77].

A δ-ε-approximate search algorithm was also proposed for
the MTree [22], and the same ideas were used to extend
existing exact data series techniques to enable them to support
δ-ε-approximate search [33]. These extensions surprisingly
outperformed the MTree and the state-of-the-art LSH tech-
niques [40], [77] across the board in efficiency, accuracy and
footprint, in-memory and on-disk.

Promising directions include developing scalable LSH tech-
niques [87], exploiting deep learning for data-dependent hash-
ing [56], and devising effective stopping criteria to further
improve the efficiency of data series extensions [33].
Approximate Search Without Guarantees. As LSH-based
techniques require high footprint and are considered slow
for many applications, ng-approximate methods that sacrifice
guarantees all together were proposed to provide answers
faster with good empirical accuracy. The most popular meth-
ods in this class are neighborhood graphs [26], [35], [57]
and inverted indexes [7], [37], [43], [83]. HNSW [7], [57], a
proximity method based on navigable small world graphs, is
considered the best contender for in-memory ng-approximate
search [6], [33], [51], while data series similarity search
methods have superior performance on-disk [33].

The practicality of ng-approximate similarity search will be
further enhanced by improving the footprint and indexing effi-
ciency of existing neighborhood-based methods, and designing
new techniques that scale to disk-based data [42].

A. Revisiting Guarantees

We observe that popular ng-approximate techniques may
return incomplete result sets, e.g., retrieving only a subset of
the neighbors for a k-NN query, yet establishing guarantees
on search results is important for several applications [63].
Extending Guarantees. In the approximate search literature,
query accuracy has been evaluated using recall, and approxi-
mation error. LSH techniques are considered the state-of-the-
art in approximate search with theoretically proven sublinear
time performance and probabilistic guarantees on accuracy
(approximation error) [55]. Recent results though, indicate
that using the approximate search functionality of data series
techniques provides tighter bounds than LSH and a much
better performance in practice, with experimental accuracy
levels well above the theoretical accuracy guarantees [33].
Note that LSH techniques can only provide probabilistic
answers (δ < 1), whereas the extended data series methods
can also answer exact and ε-approximate queries (δ = 1). A
promising research direction is to improve the existing guar-
antees, or establish new ones: (1) adding guarantees on query
time performance; (2) developing probabilistic or deterministic



guarantees on the recall or MAP value of a result set, instead
of the commonly used distance approximation error. Recall
and MAP are better indicators of accuracy, because even
small approximation errors may still result in low recall/MAP
values [5], [33].

B. Other Considerations

While most studies have focused on the high-dimensional
similarity search problem from an algorithmic point of view,
more effort should go into building end-to-end systems that
provide native support for high-dimensional vectors, including
similarity search, which is the basis for building complex
analytics. There is a significant effort under way in the context
of data series [44], though, more advanced and general systems
are needed [63].

C. Benchmarks

Benchmarking is important because it allows a fair compar-
ison of different solutions, helps foster reproducible research
and can serve to identify gaps in the state-of-the-art, which
would in turn spur future research developments. Despite the
importance of benchmarking for evaluating the performance
of existing solutions and identifying opportunities for im-
provement, currently, there exists no benchmark for scalable
similarity search. A notable effort is [6], which proposes an
interactive on-line benchmarking environment for approximate
NN search; however it covers only small in-memory datasets
and a subset of the popular similarity search approaches. A
recent work studies the concept of hardness of NN queries,
and proposes a method that constructs synthetically harder
workloads [90]. The community can expand on these efforts,
leveraging a number of experimental evaluations conducted in
this area. Some studies focus on the accuracy of similarity
measures and dimensionality reduction techniques [8], [25],
[47], while others on the efficiency of exact methods [32],
or the efficiency and accuracy of approximate approaches [6],
[33], [51], [61]. We will share the key insights gained from
these studies, describing the strengths and weaknesses of the
various approaches and linking their performance behavior to
their design choices.

IV. SCOPE AND OUTLINE

This is a 3-hour tutorial. It will motivate high-dimensional
similarity search in the context of data science in 15min
(§2), and will mainly focus on the key problems in the field,
covering the state-of-the-art and open research directions for
each problem (§3). This tutorial is designed for data science
researchers and practitioners, and will include the necessary
background for newcomers.

V. RELATION TO PREVIOUS TUTORIALS

The similarity search problem is fundamental in computer
science and has been addressed in previous tutorials [45], [74],
which are over a decade old. The most recent relevant tutorial
is [69]; however, its focus is on approximate techniques from
the high-dimensional community only, and does not cover a

multitude of novel techniques with better scalability properties
that, in addition, cover the entire spectrum of approximate
to exact query answering. Our tutorial not only covers the
state-of-the-art techniques in the field deriving from different
communities, but also compares their performance, shares
insights about their strengths and weaknesses, and emphasizes
the key open research directions in the field.

VI. PRESENTERS

Karima Echihabi is an Assistant Professor at Mohammed VI
University in Morocco. Her research interests lie in scalable
data analytics, and has conducted the two most extensive
experimental evaluations in the area of high-dimensional sim-
ilarity search (published in PVLDB). She has worked in
the Windows team at Microsoft Redmond, and the Query
Optimizer team at the IBM Toronto Lab.
Kostas Zoumpatianos has been a Marie Curie Fellow af-
filiated with Harvard Univ. and Univ. of Paris. He holds a
PhD from the Univ. of Trento. He has visited Cornell Univ.
His research is in the domains of data series management,
analytics mining, self-designing, and adaptive data systems.
He has developed the ADS and Coconut data series indexes,
and has published in top international database venues.
Themis Palpanas is a Senior Member of the French Univ.
Institute (IUF), and a professor at the Univ. of Paris. He is the
author of 9 US patents. His focus in on Data Series Manage-
ment and Analytics, developing and publishing several of the
state of the art techniques in major journals and conferences.
He has delivered 8 tutorials in top international conferences,
including VLDB and SIGMOD, ICDE, and EDBT.
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