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Structure Outline

• Introduction 

• Four Generations

• Entity Resolution Revisited: 
Leveraging External Knowledge

• Challenges and Final Remarks
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– Motivation 

– Preliminaries

Part A – Introduction 

• Four Generations

• Entity Resolution Revisited: 
Leveraging External Knowledge

• Challenges and Final Remarks
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Motivation

• Entities → invaluable asset for numerous current 

applications and systems

• Encode a large part of our knowledge 

Persons

Organizations

Projects

Locations

Products
Events

Papadakis, Ioannou, Palpanas
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• Many names, descriptions, or IDs (URIs) are used 
for the same real-world “entity”

• Example:

Matching, Linkage, Reconciliation, etc.

Papadakis, Ioannou, Palpanas
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London 런던ܠܘܢܕܘܢ लंडन लंदन લડંન ለንደንロンドン
লন্ডন ลอนดอน இலண்டன் ლონდონი Llundain

Londain Londe Londen Londen Londen Londinium
London Londona Londonas Londoni Londono Londra
Londres Londrez Londyn Lontoo Loundres Luân Đôn
Lunden Lundúnir Lunnainn Lunnon لندن لندن لندن لوندون 
לאנדאן לונדון Λονδίνο Лёндан Лондан Лондон Лондон
Лондон Լոնդոն伦敦…

• Many names, descriptions, or IDs (URIs) are used 
for the same real-world “entity”

• Example:

Matching, Linkage, Reconciliation, etc.

Papadakis, Ioannou, Palpanas
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London 런던ܠܘܢܕܘܢ लंडन लंदन લડંન ለንደንロンドン
লন্ডন ลอนดอน இலண்டன் ლონდონი Llundain

Londain Londe Londen Londen Londen Londinium
London Londona Londonas Londoni Londono Londra
Londres Londrez Londyn Lontoo Loundres Luân Đôn
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לאנדאן לונדון Λονδίνο Лёндан Лондан Лондон Лондон
Лондон Լոնդոն伦敦…

capital of UK, host city of the IV Olympic Games, host city 
of the XIV Olympic Games, future host of the XXX 
Olympic Games, city of the Westminster Abbey, city of 
the London Eye, the city described by Charles Dickens in 
his novels, …

• Many names, descriptions, or IDs (URIs) are used 
for the same real-world “entity”

• Example:

Matching, Linkage, Reconciliation, etc.

Papadakis, Ioannou, Palpanas
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the London Eye, the city described by Charles Dickens in 
his novels, …

• Many names, descriptions, or IDs (URIs) are used 
for the same real-world “entity”

• Example:

Matching, Linkage, Reconciliation, etc.

Papadakis, Ioannou, Palpanas

http://sws.geonames.org/2643743/
http://en.wikipedia.org/wiki/London
http://dbpedia.org/resource/Category:London
…
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◦ London, KY

◦ London, Laurel, KY

◦ London, OH

◦ London, Madison, OH

◦ London, AR

◦ London, Pope, AR

◦ London, TX

◦ London, Kimble, TX

◦ London, MO

Disambiguation, Deduplication, etc. 

• Plethora of different “entities” have the same name

• Example:

◦ London, London, MI

◦ London, London, Monroe, MI

◦ London, Uninc Conecuh County, AL

◦ London, Uninc Conecuh County, Conecuh, AL

◦ London, Uninc Shelby County, IN

◦ London, Uninc Shelby County, Shelby, IN

◦ London, Deerfield, WI

◦ London, Deerfield, Dane, WI

◦ London, Uninc Freeborn County, MN

◦ ...

Papadakis, Ioannou, Palpanas
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◦ London, KY

◦ London, Laurel, KY

◦ London, OH

◦ London, Madison, OH

◦ London, AR

◦ London, Pope, AR

◦ London, TX

◦ London, Kimble, TX

◦ London, MO

Disambiguation, Deduplication, etc. 

• Plethora of different “entities” have the same name

• Example:

◦ London, London, MI

◦ London, London, Monroe, MI

◦ London, Uninc Conecuh County, AL

◦ London, Uninc Conecuh County, Conecuh, AL

◦ London, Uninc Shelby County, IN

◦ London, Uninc Shelby County, Shelby, IN

◦ London, Deerfield, WI

◦ London, Deerfield, Dane, WI

◦ London, Uninc Freeborn County, MN

◦ ...

◦ London, Jack
2612 Almes Dr
Montgomery, AL
(334) 272-7005

◦ London, Jack R
2511 Winchester Rd
Montgomery, AL 36106-3327
(334) 272-7005

◦ London, Jack
1222 Whitetail Trl
Van Buren, AR 72956-7368
(479) 474-4136

◦ London, Jack
7400 Vista Del Mar Ave
La Jolla, CA 92037-4954
(858) 456-1850

◦ ...Papadakis, Ioannou, Palpanas
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News about London
reviews on hotels in London

Pictures and tags about London

Videos and tags for London

Social networks in London

Wiki pages about the London

Entities in today’s settings

• Content providers provide valuable information 
describing (part of) real-world “entities” 

• ER are required for data integration, link discovery, query 
answering, Web / object-oriented searching, etc.

Papadakis, Ioannou, Palpanas
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Entity Resolution

• Identifies and aggregates the different entity profiles that 
describe the same objects [1,2,3,4]

• Primary usefulness:

– Improves data quality and integrity 

– Fosters re-use of existing data sources

• Example application domains:

– Linked Data

– Building Knowledge Graphs

– Census data

– Price comparison portals

Papadakis, Ioannou, Palpanas
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Types of Entity Resolution

• The given entity collections can be of two types:    

clean + dirty [3,5]

• Clean:

– Duplicate-free data

– E.g., DBLP, ACM Digital Library, Wikipedia, Freebase 

• Dirty:

– Contain duplicate entity profiles

–E.g., Google Scholar, CiteseerX

Papadakis, Ioannou, Palpanas
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Types of Entity Resolution

• The given entity collections can be of two types:    

clean + dirty [3,5]

• Clean:

– Duplicate-free data

– E.g., DBLP, ACM Digital Library, Wikipedia, Freebase 

• Dirty:

– Contain duplicate entity profiles

–E.g., Google Scholar, CiteseerX

Clean Dirty 

Papadakis, Ioannou, Palpanas
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Types of Entity Resolution

• Based on the quality of input, we distinguish entity 
resolution into 3 sub-tasks:

1. Clean-Clean ER (a.k.a. Record Linkage in databases)

2. Dirty-Clean ER 

3. Dirty-Dirty ER

Equivalent to Dirty ER 
(a.k.a. Deduplication in databases)

Papadakis, Ioannou, Palpanas
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– Generation 1: tackling Veracity

– Generation 2: tackling Volume and Veracity 

– Generation 3: tackling Variety, Volume and Veracity

– Generation 4: tackling Velocity, Variety, Volume and Veracity

Part B – Four Generations 

• Entity Resolution Revisited:

Leveraging External Knowledge

• Challenges and Final Remarks

• Introduction

Papadakis, Ioannou, Palpanas
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• Earliest approach

• Scope:
– Structured data

• Goal:
– Achieve high accuracy despite inconsistencies, noise, or 

errors in entity profiles

• Assumptions:
– Known schema → custom, schema-based solutions

Generation 1: Tackling Veracity

Papadakis, Ioannou, Palpanas

Blocking Matching
Schema

Alignment
Clustering
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Step 1: Schema Alignment / Matching

• Scope:

– Record Linkage

• Goal:

– Create mappings between equivalent attributes 
of the two schemata, e.g., profession ≡ job 

• Types of Solutions:

– Structure-based

– Instance-based

– Usage-based

– Hybrid

Papadakis, Ioannou, PalpanasGeneration 1: Tackling Veracity
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Method Category Type of Evidence

Cupid [1] Structure-based Name similarity, Constraints, 
Contextual similarity

Similarity Flooding [2] Structure-based Name similarity, Contextual 
similarity

COMA [3] Hybrid Name similarity, Constraints, 
Contextual similarity

Distribution-based [4] Instance-based Value distribution

Step 1: Schema Alignment / Matching

• Taxonomy of Main Schema Matching Methods
(in chronological order)

Papadakis, Ioannou, PalpanasGeneration 1: Tackling Veracity



21
4gER 

EDBT 2020

Step 2: Blocking

• Scope:

– Both Deduplication and Record Linkage

• Goal:

– ER is an inherently quadratic problem, O(n2):
every entity has to be compared with all others 

– Blocking groups similar entities into blocks

• Comparisons are executed only inside each block

• Complexity is now quadratic to the size of the block 
(much smaller than dataset size!)

Papadakis, Ioannou, PalpanasGeneration 1: Tackling Veracity
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|E| entities

|E| entities

Brute-force 
approach

Duplicate 
Pairs

Blocking
Input: 
Entity Collection E

E.g.: For a dataset with 
100,000 entities:
~1010 comparisons,
If 0.05 msec each → 

>100 hours in total

Computational cost

Papadakis, Ioannou, Palpanas
Generation 1: Tackling Veracity
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General Principles of Blocking

1. Represent each entity by one or more signatures 
called blocking keys
– Focus on string values

2. Place into blocks all entities having the same or 
similar blocking key

3. Two matching profiles can be detected as long as 
they co-occur in at least one block

– Trade-off between recall and precision!

Papadakis, Ioannou, PalpanasGeneration 1: Tackling Veracity
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Method Key Type Redundancy 
awareness

Matching 
awareness

Key selection

Standard Blocking [2] Hash-based Red.-free Static Non-learning

Suffix Arrays [3] + [4,5] Hash-based Red.-positive Static Non-learning

Q-grams Blocking [6] + [4] Hash-based Red.-positive Static Non-learning

MFIBlocks [7] Hash-based Red.-positive Static Non-learning

Sorted Neighborhood [9] + [4,10] Sort-based Red.-neutral Static Non-learning

Duplicate Count Strategy [11] Sort-based Red.-neutral Dynamic Non-learning

Sorted Blocks [12] Hybrid Red.-neutral Static Non-learning

ApproxDNF [13] Hash-based Red.-positive Static Learning-based

Blocking Scheme Learner [14] Hash-based Red.-positive Static Learning-based

CBlock [15] Hash-based Red.-positive Static Learning-based

FisherDisjunctive [16] Hash-based Red.-positive Static Learning-based

Taxonomy of Blocking Methods [1] 

Papadakis, Ioannou, PalpanasGeneration 1: Tackling Veracity
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Genealogy Tree of Non-learning Blocking Methods [1] 

Papadakis, Ioannou, PalpanasGeneration 1: Tackling Veracity
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Step 3: Matching

• Estimates the similarity of candidate matches.

• Input

– A set of blocks

• Every distinct comparison in any block is a candidate match

• Output

– Similarity Graph

• Nodes → entities

• Edges → candidate matches

• Edge weights → matching likelihood (based on 
similarity score)

Papadakis, Ioannou, Palpanas
Generation 1: Tackling Veracity



27
4gER 

EDBT 2020

Evolution of Matching

Papadakis, Ioannou, Palpanas

Rule-based Methods [6]

Learning-based Methods Collective Methods [9,10,11]

Probabilistic Methods [5,6]

Supervised Methods [3,4]

Active Learning Methods [1,2]

Unsupervised Methods [7,8]

Generation 1: Tackling Veracity

All are heavily based on string similarity measures [6].
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Step 4: Clustering

• Partitions the matched pairs into equivalence clusters 

i.e., groups of entity profiles describing the same 

real-world object

• Input

– Similarity Graph:

• Nodes → entities

• Edges → candidate matches

• Edge weights → matching likelihood (based on similarity score)

• Output

– Equivalence Clusters

Papadakis, Ioannou, Palpanas
Generation 1: Tackling Veracity
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Clustering Algorithms for Record Linkage

Relies on 1-1 constraint 
– 1 entity from source dataset matches to 1 entity from target dataset

1. Unique Mapping Clustering [1][2]
– Sorts all edges in decreasing weight

– Starting from the top, each edge corresponds to a pair of duplicates if:
• None of the adjacent entities has already been matched

• predefined threshold < edge weight

2. Row-Column Clustering [3]
– efficient approximation of the Hungarian Algorithm

3. Best Assignment Clustering [4]
– efficient, heuristic solution to the assignment problem in unbalanced 

bipartite graphs

Papadakis, Ioannou, PalpanasGeneration 1: Tackling Veracity
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Clustering Algorithms for Deduplication

• A wealth of literature on 
clustering algorithms

• Requirements:
– Partitional and disjoint Algorithms

• Sometimes overlapping may be 
desirable

– Goal: Sets of clusters that

• maximize the intra-cluster
weights

• minimize the inter-cluster edge 
weights

Classification of clustering algorithms 

[6]

Papadakis, Ioannou, PalpanasGeneration 1: Tackling Veracity (courtesy of Oktie Hassanzadeh)
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Dirty ER Clustering Algorithms Characteristics [3]

• Most important feature “Unconstrained algorithms”

– Algorithms need to be able to predict the correct number of 
clusters

• Need to scale well 

– Time complexity < O(n2)

• Need to be robust with respect to characteristics of the data

– E.g., distribution of the duplicates

• Need to be capable of finding ‘singleton’ clusters

– Different from many clustering algorithms

• E.g., algorithms proposed for image segmentation

Papadakis, Ioannou, PalpanasGeneration 1: Tackling Veracity (courtesy of Oktie Hassanzadeh)
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Summary of Experimental Results [3]

Generation 1: Tackling Veracity
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• Same workflow as Generation 1
• Scope:

– (tens of) millions of structured entity profiles

• Goals:
– High accuracy despite noise 
– High time efficiency despite the size of data

• Assumptions:
– Known schema → custom, schema-based solutions

Generation 2: Tackling Volume and Veracity

Papadakis, Ioannou, Palpanas

Blocking Matching
Schema

Alignment
Clustering
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Solution: Parallelization

Two types:

• Multi-core parallelization

– Single system → shared memory

– Distribute processing among available CPUs

• Massive parallelization

– Cluster of independent systems

– Map-Reduce paradigm [1]

• Data partitioned across the nodes of a cluster

• Fault-tolerant, optimized execution

• Map Phase: transforms a data partition into (key, value) pairs 

• Reduce Phase: processes pairs with the same key

Papadakis, Ioannou, PalpanasGeneration 2: Tackling Volume & Veracity
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Parallelization Methods per Step

• Blocking
• Dedoop [2]

• MapReduce-based Sorted Neighborhood [3]

• Matching
– Multi-core approaches [7][8]

– MapReduce-based: Emphasis on load balancing
• BlockSplit & PairRange [4][5]

• Dis-Dedup [6]

• Message-passing framework [9]

• Clustering
• Fast Multi-source Entity Resolution (FAMER) framework 

[10][11]

Papadakis, Ioannou, PalpanasGeneration 2: Tackling Volume & Veracity
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• Scope:
– User-generated Web Data

Voluminous, (semi-)structured datasets. 

• BTC09:  1.15 billion triples, 182 million entities.

Users are free to add attribute values and/or attribute names 

→ unprecedented levels of schema heterogeneity. 

• Google Base: 100,000 schemata for 10,000 entity types

• BTC09:  136,000 attribute names

Several datasets produced by automatic information extraction 
techniques  → noise, tag-style values.

G3: Tackling Variety, Volume and Veracity
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Example of Web Data

Noise

Attribute
Heterogeneity

Loose Schema 
Binding

Split
values
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Schema Clustering

• Schema Matching → not applicable

• Instead, partition attributes according to their syntactic
similarity, regardless of their semantic relation

• Goal:
– Facilitate next steps

• Scope:
– Both Clean-Clean and Dirty ER

• Attribute Clustering [1][2][3]
• Create a graph, where every node represents an attribute 

• For each attribute name/node ni

• Find the most similar node nj

• If sim(ni,nj) > 0, add an edge <ni,nj>

– Extract connected components

– Put all singleton nodes in a “glue” cluster

Papadakis, Ioannou, PalpanasGeneration 3: Tackling Variety, Volume & Veracity
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Block Building

• Unlike Blocking in G1/G2, it considers all attribute 
values and completely ignores all attribute names 

→ schema-agnostic functionality

• Core approach: Token Blocking [1]
1. Given an entity profile, extract all tokens that are 

contained in its attribute values.

2. Create one block for every distinct token with 
frequency > 2 → each block contains all entities with the 
corresponding token.
Pros:
• Parameter-free

• Efficient

• Unsupervised

Papadakis, Ioannou, PalpanasGeneration 3: Tackling Variety, Volume & Veracity
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Example of Token Blocking 

Papadakis, Ioannou, PalpanasGeneration 3: Tackling Variety, Volume & Veracity
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Genealogy of Block Building Techniques [8]

MapReduce-based parallelizations in [7]

Generation 3: Tackling Variety, Volume & Veracity
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Block Processing

• High Recall due to redundancy 

• Low Precision due to:

1. the blocks are overlapping → redundant comparisons

2. high number of comparisons between irrelevant entities 
→ superfluous comparisons

Solution:

restructure the original blocks so as to increase 

precision at no significant cost in recall

Papadakis, Ioannou, PalpanasGeneration 3: Tackling Variety, Volume & Veracity
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Block Processing Techniques

Generic approach

– Assign a matching likelihood score to each item

– Discard items with low costs

Block-centric methods

• Block Purging [1,2,3]

• Block Filtering [4]

• Block Clustering [5]

Papadakis, Ioannou, PalpanasGeneration 3: Tackling Variety, Volume & Veracity
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Comparison Cleaning Methods [17]

Papadakis, Ioannou, PalpanasGeneration 3: Tackling Variety, Volume & Veracity
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Entity Matching

• Collective approaches to tackle Variety
• Most methods crafted for Clean-Clean ER
• General outline of 

SiGMa [1], PARIS [2],  LINDA [3], RiMOM-IM [4,5]
– Bootstrap with a few reliable seed matches. 
– Using value and neighbor similarity, propagate initial 

matches to neighbors. 
– Order candidate matches in descending overall similarity 
– Iteratively mark the top pair as a match if it satisfies a 

constraint
– Recompute the similarity of the neighbors
– Update candidate matches order

• MinoanER [6] performs a specific number of steps, 
rather than iterating until convergence

Papadakis, Ioannou, PalpanasGeneration 3: Tackling Variety, Volume & Veracity
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Entity Clustering

• Methods of G1 & G2 are still applicable

– Only difference: similarity scores extracted in a 
schema-agnostic fashion, not from specific 
attributes

• SplitMerge [1]

– inherently capable of handling heterogeneous 
semantic types

[1] M. Nentwig, A. Groß, and E. Rahm. Holistic entity clustering 
for linked data. In ICDM Workshops, pages 194–201, 2016.
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• Scope:
– Applications with increasing data volume and time 

constraints
• Loose ones (e.g., minutes, hours) → Progressive ER

• Strict ones (i.e., seconds) → Real-time (On-line) ER

• End-to-end workflows for Progressive ER

G4: Tackling Velocity, Variety, Volume and Veracity

Block
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Progressive Entity Resolution

Unprecedented, increasing volume of data → applications 
requiring partial solutions to produce useful results

get most of the benefit 
much earlier

may require some
pre-processing

Generation 4: Tackling Velocity, Variety, Volume and Veracity
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Outline Progressive ER

• Requires:

– Improved Early Quality

– Same Eventual Quality

• Prioritization

– Defines optimal processing order for a set of entities

– Static Methods [1,2]:
• Guide which records to compare first, independently of Entity Matching

results

– Dynamic Methods [3]:
• If ci,j is a duplicate, then check ci+1,j and ci,j+1 as well.

• Assumption:

– Oracle for Entity Matching

Generation 4: Tackling Velocity, Variety, Volume and Veracity
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Real-time Entity Resolution

Same workflow as Generations 1 and 2:

Same scope (so far):

• Structured data

Different input:

• stream of query entity profiles

Different goal:

• resolve each query over a large dataset in the shorted 
possible time (& with the minimum memory footprint)

Blocking Matching
Schema

Alignment
Clustering

Generation 4: Tackling Velocity, Variety, Volume and Veracity
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Techniques per workflow step

Incremental Blocking
• DySimII [1] - extends Standard Blocking

• F-DySNI [2,3] - extends Sorted Neighborhood 

• (S)BlockSketch [4] - bounded matching time, constant memory footprint

Incremental Matching
• QDA [5] - SQL-like selection queries over a single dataset

• QuERy [6] - complex join queries over multiple, overlapping, dirty DSs 

• EAQP [7] - queries under data

• Evolving matching rules [8]

Incremental Clustering
• Incremental Correlation Clustering [9]

Generation 4: Tackling Velocity, Variety, Volume and Veracity
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– Deep Learning for Entity Resolution

– Crowd-sourced Entity Resolution

Part C – Entity Resolution Revisited:    
Leveraging External Knowledge

• Challenges and Final Remarks

• Introduction

• Four Generations 

Papadakis, Ioannou, Palpanas
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Deep Learning

• Specific class of Machine Learning / Data Mining

• Teaches computers to do what comes naturally to 
humans: learn by example 

• Goal: learn a complicated function from the data 

• Ideal for complex tasks involving multi-dimensional data 

• Has transformed many fields, e.g., computer vision, 
speech recognition, natural language processing, etc.

– Similar performance, or even better, to human expert 
performance

• Details in [1] 
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Embeddings

• Based on the distributional hypothesis

i.e., words appearing in the same context share meaning 

• Each word is represented as a distribution of weights 
(positive or negative) across specific dimensions

Generation 4: Tackling Velocity, Variety, Volume and Veracity

• Goal: capture semantic
string similarities

• Popular embeddings 
pre-trained over huge 
corpora:
- Word2Vec [5] 
- Glove [6] 
- fastText [7]
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Deep Learning for Schema Matching

SEMPROP [2]

Two types of matchers:

1. Semantic Matcher (SeMa) based on Coherent Groups
if the average cosine similarities between all vectors in X > δ → SeMa(+), 
otherwise SeMa(-)

2. Syntactic Matcher (SYNM)
i. Instance matcher (Jaccard similarity between two sets of values)

ii. Name matcher
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Deep Learning for Blocking

AutoBlock [3]

• Ηands-off approach

• Combines similarity-preserving representation learning 
with nearest neighbor search
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Deep Learning for Matching – Part I

DeepER [4]

• Extracts tuple embeddings from word embeddings
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DeepER [4]

1. Straightforward approach: 
– Average word embeddings in each attribute

– Concatenate attribute embeddings

– Entity Similarity: k-dimensional cosine similarity (k=#attributes)

– Pros: Simple & efficient

– Cons: Ignores word order

2. Compositional Approach – RNN with LSTM
– Encode a sequence of words from all attribute values into a x-dimensional 

vector

– Bidirectional RNNs capture dependencies from both directions

– Semantically related attributes should have the same order

– Entity Similarity: x-dimensional vector from vector difference or hadamard
product

• Considers out-of-vocabulary cases, e.g., Vocabulary Retrofitting

• Blocking: Multi-Probe LSH based on embeddings
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Deep Learning for Matching – Part II

DeepMatcher [8]
Assumes that Schema Matching and 
Blocking are already in place

Three step approach:

1. Attribute embedding
each attribute value is tokenized and

converted into a sequence of embedding vectors

2. Attribute similarity representation
one vector with the similarity per attribute 

Entity Similarity: concatenate attribute similarities

3. Binary classification

The choices for these steps frame the 

solution space for Deep Learning-based ER



74
4gER 

EDBT 2020Papadakis, Ioannou, Palpanas

DeepMatcher

Experimental Analysis including
part of the possible solutions
over real-world datasets

Main conclusions:

For Generations 1 and 2
Deep Learning does not 
outperform existing 
state-of-the-art solutions,
• significantly lower time efficiency (very high training time)
• requires too many labelled instances
• similar effectiveness,
unless the attribute values involve very high levels of noise

For Generation 3
Deep Learning yields a schema-agnostic approach that achieves the highest F-Measure
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Deep Learning for Matching – Part III

Multi-Perspective Matching [9]
• Adaptively selects the optimal similarity measures for heterogenous attributes 

• Considers 8 similarity measures:

– Numeric attributes: relative difference, absolute difference

– String attributes: exact similarity, edit distance, Jaro similarity, Smith and Waterman sim.

– Textual attributes: RNN similarity [8], Hybrid similarity [8]
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– Deep Learning for Entity Resolution

– Crowd-sourced Entity Resolution

Part C – Entity Resolution Revisited:    
Leveraging External Knowledge

• Challenges and Final Remarks

• Introduction

• Four Generations 

Papadakis, Ioannou, Palpanas
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Crowd-sourcing

• Process/work divided among a large number of people, 
either paid or unpaid

• Idea: tasks are simple for human intelligence, but 
complex for computers

• Approach:

– Break a problem into  microtasks, called Human Intelligence 
Tasks (HITS)

– Choose an online community

• Amazon Mechanical Turk

• Figure Eight (former CrowdFlower)

– Assign to every individual, called worker, a series of HITs

– Each worker is paid per executed HIT → monetary cost

– Popular for solving many tasks, e.g., CrowdDB
Papadakis, Ioannou, Palpanas

https://www.mturk.com/
https://www.figure-eight.com/
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Crowd-sourcing for Entity Resolution

• Delegate the entity matching decisions to the 
workers

i.e., transform pairwise comparisons into HITs

• Challenges:

1. Generating HITs 

2. Formulating HITs 

3. Balancing accuracy and monetary cost 

4. Restricting the labor cost

Papadakis, Ioannou, Palpanas
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Challenge 1: Generating HITs

• Fully Crowd-based Approach:

– Create one HIT per pair of candidate match

• Pros:

– Straightforward implementation

• Cons:

– Quadratic complexity → huge monetary cost

Entity Collection A Entity Collection B

match?
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Hybrid HITs Generation

• Two-step Approach:

1. Produce candidate matches using G1 workflow 
(i.e., Blocking → Matching)

2. Generate HITs for part of the candidate matches

• Two approaches:

– CrowdER [8]

– ZenCrowd [9]

Papadakis, Ioannou, Palpanas
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CrowdER [8]

1. It automatically discards highly dissimilar pairs of 

entities

2. Ambiguous pairs (where similarity ≥ threshold) are 

formulated as cluster-based HITS (see below)

Pros:

• Most pairs are quickly filtered out

• Significantly lower number of HITs

Cons:

• Significant crowd-sourcing overhead
Papadakis, Ioannou, Palpanas
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ZenCrowd [9]

• Automatic step:

– for every entity, rank the most similar ones using TF-IDF

– threshold on the ranking function or on the number of 

retrieved documents

• Crowdsourcing step:

– Dynamically assesses the quality of worker decisions 

using a probabilistic model:

• Each worker is assigned a prior probability based on the 

training set

• As new decisions are made, the unreliable workers are 

ignored → threshold on probability estimates for 

accepting a pair of entities as a match
Papadakis, Ioannou, Palpanas
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Challenge 2: Formulating HITs

• Goal: find the best UI for presenting HITs to workers

• Naive Approach: one HIT per pair of candidate matches

I.e., “is pi matching with pj” ?

Pros:

• Simple implementation

• Easy and comprehensible task

Cons:

• Quadratic complexity wrt to time and monetary cost

• Not scalable
Papadakis, Ioannou, Palpanas
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Pair-based HITs [8]

• A single HIT contains k questions of the form 
“is pi matching with pj” ?

• Workers should check each question individually

Pros:

• Complexity is reduced to O(n2/k) 

• Lower time and monetary costs than naïve approach

Cons:

• Still, very high complexity

Papadakis, Ioannou, Palpanas
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Cluster-based HITs [8]

• A single HIT contains k entities

• Each worker should mark all matches between all 
possible pairs

Pros:

• Complexity is further lowered to O(n2/k2)

• A HIT that contains many matches requires fewer comparisons 
than a pair-based HIT

Cons:

• Still, very high complexity

• Slightly lower accuracy

• Two duplicates are matched only if they co-occur in a HIT

Papadakis, Ioannou, Palpanas
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Pair-based vs. cluster-based HITs

Trade-off between accuracy and cost [8]:

• The pair-based HITs are simpler, allowing workers to 
provide more accurate responses.

• The cluster-based HITs enable humans to mark many 
pairs of records with a few clicks.

• Generating Cluster-based HITs is an NP-hard problem, 

– CrowdER solves it in a greedy way

match?

…

match?
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Hybrid HITs [10]

• Main idea: the error rate of workers is different 
for different profile pairs

– The most “difficult” profile pairs (i.e., the high error-
rate pairs) should form pair-based HITs

– All other profile pairs (i.e., the low error-rate pairs) 
should form cluster-based HITs

• In practice, generating the best hybrid hits within 
the given budget is an optimization task

– Waldo [10] proposes algorithms with probabilistic 
guarantees for solving it

Papadakis, Ioannou, Palpanas
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Attribute-based HITs

• An entity may contain complex structures and 
attributes → overwhelming information for a 
worker

• Solution: Crowdlink [14]

– Each pair of entities is decomposed into attribute-
level HITs

– A probabilistic framework selects the k best attributes 
that satisfy the user requirements

Papadakis, Ioannou, Palpanas
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Challenge 3: Balancing accuracy and monetary cost

Goal: minimize the monetary cost, while maximizing 
accuracy

Generic approach [1]:
1. Exploit the transitive relations between detected 

duplicates
– positive transitivity: if ei ≡ ej and ej ≡ ek , then ei ≡ ek

– negative transitivity:(a.k.a anti-transitivity): 
if ei ≡ ej, but ej ≠ ek , then ei ≠ ek

2. Optimize the order of HITs 
Find matches before non-matches to make the most of 
transitivity.
NP-hard problem → approximately solved with heuristics

Papadakis, Ioannou, Palpanas
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Random Ordering [3]
Initialize a similarity graph G=(V,E), 
while ( E ≠ {} )

pick a pair of entities ei-ej

crowd-source ei-ej

if ( ei ≡ ej )
contract edge <ei, ej>

Pros:
• It performs relatively well both in theory and practice

Cons:
• It ignores the edge weights

Papadakis, Ioannou, Palpanas
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Edge-centric ordering [1]

Initialize a cluster graph G=(V,0)
Esort = candidate matches sorted in decreasing likelihood 
while ( Esort ≠ {} )

get the next pair of candidate matches ei-ej 

if ( clusteri = clusterj )
deduced match

else 
if an edge between clusteri  =& clusterj 

deduced non-match
else

crowd-source ei-ej

update cluster graph

Papadakis, Ioannou, Palpanas
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Node-centric ordering [3]

Vsort = sort entities in decreasing overall likelihood

for each vi in Vsort

Vi
sort = candidate matches in decreasing likelihood

for each vj in Vi
sort 

crowd-source ei-ej

if (ei ≡ ej )

break;

Papadakis, Ioannou, Palpanas
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Maximizing Progressive Recall [4]

Iteratively crowd-source the pair that maximizes 
the expected marginal gain in recall

Core notions:

• Edge benefit:

Expected #matches detected by crowdsourcing a pair

• Node benefit:

Expected #matches that could be positively inferred if 
any of the incident edges is a match

Papadakis, Ioannou, Palpanas



95
4gER 

EDBT 2020

Extending Ordering Algorithms [4]

• Extended Edge-centric Ordering
– in every iteration, the top-w weighted edges are 

selected

– the one with maximal edge benefit is crowd-sourced

• Extended Node-centric Ordering
– in every iteration, the top-w weighed nodes are 

selected

– the one with maximal node benefit is processed for 
crowd-sourcing

For w=1, we get the original algorithms

Papadakis, Ioannou, Palpanas
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Probabilistic framework for Question Selection [2]

Core idea:
• Transform the output of a good similarity function into a 

probability function 
• Estimate the expected accuracy by asking a particular 

question (in combination with transitive closure)
• Iteratively crowd-source the pair with the highest expected 

accuracy 

Implementation:
• Analytically computing the optimal order is #P-hard 
• Approximate solution based on heuristics 

e.g., discard pairs with very high or low probabilities.  
• Alternate solution: iteratively crowd-source the pair closer 

to 0.5

Papadakis, Ioannou, Palpanas
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Perfect vs. Noisy Workers
Problem:
• Previous works assume that workers are infallible 
• Unrealistic assumption:

– High accuracy workers have an error rate up to 25% [11,12], due to
• lack of domain expertise,
• individual biases,
• task complexity and ambiguity
• tiredness
• malicious behaviors

• These works amplify worker errors, compromising overall ER accuracy

Solution:
• Generic approach to tackling noisy workers:

– Assign the same HIT to multiple workers
– Reconcile their responses through majority voting
– Still, errors are possible [11,12] 

• Need for specialized approaches that inherently tackle noisy workers

Papadakis, Ioannou, Palpanas
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Adaptive Crowd-based Deduplication [12]

Three phases:
1. Pruning

– Automatically eliminates record pairs with low similarities

2. Cluster generation
– Applies correlation clustering on the results of initial crowd-

sourced pairs

3. Cluster refinement
– More new HITs to adjust the original disjoint clusters using 

split and merge operations

Pros:
– Higher accuracy. Reconciles inconsistent crowd results, 

instead of computing their transitive closure.

Cons: 
– Higher monetary cost

Papadakis, Ioannou, Palpanas
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Attribute Labeling and Clustering (ALC) [15]

• Crowdsource several attribute labels per entity

– E.g., label the attribute “Type of celebrity” with 
“Actor/Actress”, “Singer” or “Athlete”

• Use attribute labels as blocking

– Only pairs with common labels are crowdsourced

• Strategies for error mitigation

– Majority voting

– Approximate matching

• Probabilistic model optimizes the labelling process for a 
given recall

Papadakis, Ioannou, Palpanas
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Partial-order based Framework [17] 
• Crowdsourced ER is modelled as a DAG based on a partial-

order of comparisons:
– cij dominates ckl if it has no smaller similarities than on every 

attribute
– cij strongly dominates ckl if it has larger similarity on at least 

one attribute 

• For each crowdsourced comparison with sufficient 
confidence:
– If it is labelled as “match” → all comparisons that dominate it 

are also labelled as “match”
– If it is labelled as “non-match” → all comparisons that it 

dominates are also labelled as “non-match”

• Intelligent question selection:
– serially (one-by-one) or in parallel

Papadakis, Ioannou, Palpanas
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bDENSE [18]

• Crowdsourced ER is modeled as the Maximum 
Likelihood Clustering (MLC) of the similarity graph

– NP-hard task

– Spectral-Connected-Components for approximation
• merges two clusters only when the overall evidence indicates that it is 

likely that their entities are matching

• Question selection:

– In each iteration, crowdsource the comparison that maximizes 
the accuracy of MLC
• Based an ρ-ratio, which considers the strength of positive and negative 

links between two disjoint sets of entities

Papadakis, Ioannou, Palpanas
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Probabilistic ER With Crowd Errors [11, 16]

• Crowdsourced ER is modelled as clustering 
problem over an uncertain similarity graph:
– Edge weights: (matching probability) = the ratio of 

workers who voted “match”

• Goal: 
find the maximum likelihood (and transitively-
closed) clustering 

• Solution:
in each iteration, crowdsource the pair that 
maximizes the reliability of a clustering
– Considers global information unlike [12,18]

Papadakis, Ioannou, Palpanas
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Pair-wise Error Correction Layer [13]

• Flexible approach that can be combined with any 
method assuming infallible workers in three ways:
1. Lazy
2. Eager
3. Adaptive

• Goal: 
maximize Progressive F-measure 

• Outline:
– Asks random queries before adding a node to an 

equivalence cluster
– Adds the node to the cluster only if the crowd gives 

#log|C| positives answers
– Merge phase to boost recall
– Split phase to boost precision

Papadakis, Ioannou, Palpanas
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Challenge 4: Restricting the labor cost

Limitations of most approaches:

• They crowd-source part of the end-to-end ER 
workflow 

• They involve a high developer cost 

• Task-specific implementations

• Restricted to ER problems with large budgets

Papadakis, Ioannou, Palpanas
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Corleone [5]

• Combines crowdsourcing with active learning to offer:

– an end-to-end solution

– generic enough to support any application

– involves no implementation cost

– suitable for lay users

• Input comprises:

– the data to be resolved

– short HITs description for workers

– few labeled pairs

Papadakis, Ioannou, Palpanas
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Falcon [6] & CloudMatcher [7]

Corleone limitations:
– not scalable to large datasets

– runs in-memory on a single machine

Solutions: 

• Falcon
– scales to 1-2.5M entities for only ~$60 in 2-14 hours

– runs Corleone on a cluster using MapReduce

– exploits crowd-time to run machine tasks

• CloudMatcher
– implements Falcon as a cloud service

Papadakis, Ioannou, Palpanas
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Part D – Challenges and 
Final Remarks

• Introduction

• Four Generations 

• Entity Resolution Revisited: 

• Leveraging External Knowledge

Papadakis, Ioannou, Palpanas
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Conclusions

Most promising works focus on:
1. Deep Learning
• Pros: 

– High accuracy

• Cons: 
– High training time
– too many training instances

2. Crowd-sourcing.
• Pros: 

– High accuracy

• Cons: 
– High monetary cost
– Not scalable to very large datasets

Papadakis, Ioannou, Palpanas
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Challenges

Many challenges ahead

• Address shortcomings of Deep Learning

– e.g., transfer learning for reducing labelling cost

• Cover gaps

– e.g., incremental ER for semi-structured data

• New domains

– e.g., adapt aforementioned techniques to privacy-
preserving Entity Resolution

Papadakis, Ioannou, Palpanas
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ER Systems

• Literature focuses on stand-alone methods

• More emphasis on end-to-end systems
– Examples: Magellan [1], JedAI [2]

– Partially cover the 4 generations

– More efforts meeting the following requirements 
[1,3]:
• open-source, extensible systems

• process data of any structuredness

• no coding for users

• guidelines for creating effective solutions

• covers the entire end-to-end pipeline exploit

• a wide range of techniques 

Papadakis, Ioannou, Palpanas
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Automatic Configuration

Facts:

• Several parameters in every method 
– Applies to all generations and workflow steps

• Performance sensitive to internal configuration

• Manual fine-tuning required

Open Research Directions:

• Plug-and-play methods

• Data-driven configuration
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Thank You!
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