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Abstract

This thesis summarizes my main research activities conducted during the last ten years.
I have worked in the field of network optimization, developing both centralized and dis-
tributed approaches, while focusing on three main research areas: (1) Wireless Body Area
Networks, (2) Cognitive Radio Networks, and (3) Virtual Networks and Cloud Computing.

In fact, all these technologies have contributed to shape modern networks, starting from
sensing, and its applications to medical and healthcare environments, intelligent spectrum uti-
lization, which enables improved network performance, and virtualization, that allows scal-
ability and dynamic implementation of novel network services, with reduced costs. Specifi-
cally, I have investigated resource allocation, network planning, spectrum management, inter-
ference and congestion mitigation as well as various optimization problems in such networks.

To efficiently address these problems, I have used and developed the most appropri-
ate mathematical modeling tools, like integer, linear and nonlinear programming, stochastic
models, and game theory, as well as performance evaluation techniques involving extensive
simulations.

As a “fil rouge” of all these works, I always address the research problems I investi-
gate starting from their mathematical modeling, since their theoretical analysis allows me to
identify the fundamental relationships necessary to design an efficient and practical solution
with higher value for the technology’s audience. Such an approach has proven particularly
fruitful in recent years, since the rapid growth of all information and communication tech-
nology (ICT) sectors requires a careful redesign of the existing technologies to consider new
communication paradigms (Internet of Things, 5G networks, Cloud Computing, Network
Function Virtualization, Software Defined Networking ...) and performance metrics (e.g.,
energy/spectral efficiency, wireless network capacity, signal-to-interference-plus-noise ratio,
pricing ...), to design next generation Internet architectures and protocols.
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Chapter 1

Introduction

Today’s networks offer a large range of applications of great (social) benefit for users. Think,
for example, to the impressive progress of sensor applications for healthcare systems, along
with the seamless mobility, ubiquitous connectivity and improved performance provided by
5G mobile systems. Current networks are highly heterogeneous and need to interact with dif-
ferent types of recently emerging infrastructures, such as Internet of Things, Cloud Comput-
ing data centers and Mobile Edge Computing facilities. This phenomenon has dramatically
increased the complexity of such networks and has encouraged infrastructure and service
providers to leverage Virtualization techniques and implement novel mechanisms for effi-
ciently managing, optimizing and orchestrating their physical/virtual resources in a flexible
manner.

For these reasons, in the last ten years, I have focused on three main research areas, which
constitute, in my view, fundamental building blocks of current and next-generation networks:
(1) Wireless Body Area Networks, (2) Cognitive Radio Networks, and (3) Virtual Networks
and Cloud Computing. Specifically, I have worked in the field of network optimization,
developing both centralized and distributed approaches for such networks. I have addressed
various optimization problems related to resource allocation, network planning, spectrum
management, interference and congestion mitigation, using mathematical modeling tools,
such as linear, nonlinear, stochastic programming and game theory.

My main contributions in the aforementioned 3 research areas are summarized hereafter,
and then a more detailed description is given for each of them in the next Chapters (2–4).
Chapter 5 summarizes other contributions I provided in the same period. Finally, Chapter 6
provides conclusions and future perspectives, including my research project for the next five
years.

1.1 Wireless Body Area Networks and Body-to-Body Networks

Wireless Body Area Networks (WBANs) have emerged as an effective means to provide
several promising applications in different domains, such as remote healthcare, athletic per-
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CHAPTER 1. INTRODUCTION 2

formance monitoring, military and multimedia [1, 2, 3, 4, 5, 6], to cite a few. In general, a
WBAN topology comprises a set of sensor nodes, which have to be very simple, cheap and
energy efficient, and a sink node. Sensors are usually placed in the clothes, on the body or
under the skin, and they collect information about the person and send it through one-hop or
multi-hop wireless paths to the sink, in order to be processed or relayed to other networks.
Since WBAN sensors are small and use the wireless medium, which is prone to interference
and collisions, to transmit their data, they present very stringent power requirements. Hence,
energy-efficient reliable data delivery and scheduling are mandatory in a WBAN scenario.
Of course, mobility and security are additional challenging issues in WBANs, and require
energy-efficient and secure mobility-aware communication mechanisms.

Furthermore, the co-existence of several WBANs and the interaction between each other
as well as with their surrounding environment form a large-scale network called Body-to-
Body network, which presents various challenges at different levels, such as data delivery
and routing among WBANs, communication links scheduling and interference mitigation,
etc.

Main Contributions:
In our works, we investigated the WBAN design optimization problem, reliable data com-
munication, routing and handover mechanisms for WBANs, interference mitigation in Body-
to-Body Networks (BBNs), using centralized as well as distributed optimization approaches.
The main contributions are summarized as follows:

• Optimal, energy-efficient design of Wireless Body Area Networks: In [7, 8, 9], we
have proposed energy-aware optimal design models for WBANs. The main idea was
to deploy some relay nodes in the network in order to relay the data of sensors far away
from the sink through multi-hop links. This reduces the energy consumption of sensors
and hence improves the network lifetime. The optimal WBAN topology design model
was evaluated considering different body postures’ scenarios (i.e., standing, sitting and
walking). Our contributions in this area have served as a baseline reference for future
research activities.

• Cross-layer routing and handover in Wireless Body Area Networks: In [10], we have
proposed a priority-based cross-layer medium access control and intra- and extra-body
routing protocols for healthcare monitoring applications. These protocols are based on
a set of defined healthcare monitoring applications (or traffic categories) that represent
general monitoring traffic data, high priority and emergency data.
A multi-attribute decision making handover algorithm for WBANs is proposed in [11].
The main feature of our handover algorithm is to choose, in a soft and seamless way, the
best network to which WBAN data should be relayed, taking into account some qual-
ity of service attributes – choose the network with the best signal quality and smallest
delay – using the mobile phone radio interfaces (i.e., 4G, WiFi, etc.).
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• Interference Mitigation in Body-to-Body Area Networks: In [12, 13, 14, 15, 16],
we have first addressed the interference mitigation problem in BBNs (networks of
WBANs), using a centralized optimization approach. We have developed an integer
linear programming model and a set of efficient heuristics that guarantee low inter-
ference and high throughput. We have then proposed a distributed game-theoretic
approach for minimizing the interference; each WBAN in the BBN plays the role of a
player, and its objective is to select a wireless channel in order to minimize the signal-
to-interference-plus-noise ratio.

Our contributions in this research area are further detailed in Chapter 2.

1.2 Cognitive Radio Networks

Cognitive radio networks (CRNs) are envisioned to deliver high bandwidth to mobile users
via heterogeneous wireless architectures and dynamic spectrum access techniques [17]. Such
networks provide the capability to share the wireless channel with primary users in an oppor-
tunistic manner. In CRNs, a primary (or licensed) user has a license to operate in a certain
spectrum band; his access is generally controlled by the Primary Operator (PO) and should
not be affected by the operations of any other unlicensed user. On the other hand, unlicensed
(secondary) users have no spectrum license, and they implement additional functionalities to
share the licensed spectrum band without interfering with primary users.

Similarly, in TV White Space networks, idle TV channels – those unused by TV stations
and called “TV White Spaces” – are made available for use to (non-primary or secondary)
mobile devices, as in the case of CRNs, in an opportunistic manner. The TV channel allo-
cation scheme should guarantee low inteference with TV stations (primary users) and other
secondary devices residing in the same geographic area.

Main Contributions:
Cognitive radio nodes can opportunistically exploit (and aggregate) underutilized licensed
and unlicensed spectrum to transmit at higher data rates. These devices are in general ge-
ographically distributed, and aim at maximizing their own throughput. Therefore, Game
Theory is a good candidate to investigate the spectrum access problem in CRNs where each
CR device plays the role of a player [18, 19, 20].

• Non-cooperative spectrum access. We have studied in [18, 19] the spectrum access
problem in CRNs proposing a non-cooperative spectrum access game. In this game,
the secondary users (or the players) access simultaneously multiple spectrum bands
left available by primary users, minimizing the interference with primary users as well
as with the other competing secondary users.



CHAPTER 1. INTRODUCTION 4

• Pricing and network selection. In [20], we considered a Cognitive Radio scenario
which consists of a secondary network that coexists with a primary network, as well as
a large set of cognitive users, and we address the joint pricing and network selection
problem. The problem was formulated as a Stackelberg (leader-follower) game where
first the Primary and Secondary operators compete with each other and set the network
subscription price to maximize their revenues. Then, users perform the network se-
lection process, deciding whether to choose the primary network and pay more for a
guaranteed service, or use a cheaper, best-effort secondary network, where congestion
and low throughput may be experienced.

• Distributed TV White space access. Since very encouraging results were obtained in
our previous works [18, 19, 20], we extended the idea of adopting a game theoretic
approach to the TV White Space context, and proposed in [21, 22] non-cooperative
games for channel allocation in TV White Space networks, which have in common
with CRNs the fact that the mobile user can exploit channels left free by TV sta-
tions (or primary users); however, this network scenario imposes different, peculiar
technological constraints that must be modeled accurately (i.e., the TV spectrum, the
maximum transmission power, ...).

Chapter 3 describes in more detail our main contributions on these topics.

1.3 Virtualization and Cloud Computing

Network Functions Virtualization (NFV) aims to evolve standard IT virtualization technology
to consolidate many network equipment types onto industry standard high volume servers,
switches and storage. It involves implementing network functions in software that can run on
a range of industry standard server hardware, and that can be moved to, or instantiated in, var-
ious locations in the network as required, without the need to install new equipment [23, 24].
NFV technology has emerged as a means to reduce capital and operational expenditures
(CAPEX/OPEX) of telecommunication operators, to offer them some flexibility in operat-
ing and orchestrating the resources of their physical infrastructure [23, 24]. Virtualization
comes hand in hand with Cloud Computing [25, 26] in order to provide users with large scale
storage and computation services. Cloud Computing has emerged as a means to facilitate
the transition from a stationary IT model, where information is locally processed and stored
in a physical device to a distributed model that promotes the use of remote resources in an
abstract environment.

Main Contributions:
Optimal resource allocation constitutes a major issue in NFV-based networks and Cloud
computing, wherein the main goal of the physical infrastructure provider is to allocate re-
sources in an efficient way in order to satisfy end-users’ demands while maximizing its rev-
enue. Our main contributions to address this problem are summarized hereafter.



CHAPTER 1. INTRODUCTION 5

• Resource orchestration in NFV-based networks. In [27, 28], we have studied, respec-
tively, the congestion mitigation problem using a centralized optimization approach
and the resource orchestration problem by the means of a game theoretic approach in
NFV-based networks, and we have proposed several models and efficient algorithms
to minimize the per-link worst congestion and/or the total congestion in the network.

• Resource allocation optimization in Cloud Computing. In [29, 30, 31], we focused on
the Infrastructure as a Service (IaaS) model of Cloud computing and developed a Col-
umn Generation-based optimization approach for optimizing the resource allocation
problem, satisfying IaaS users’ requests with quality of service requirements, while
maximizing the revenue of the Cloud provider.

Chapter 4 develops our contributions addressing the aforementioned problems.



Chapter 2

Optimal design and interference
mitigation in Wireless Body Area
Networks

The ongoing evolution of wireless technologies has fostered the development of innovative
network paradigms like the Internet of Things (IoT), where the pervasive deployment of
wearable devices, endowed with sensing capabilities, interweaves the physical and digital
worlds, thus enabling the development of enhanced services. Mobile medical applications
and wearable devices for remote monitoring, entertainment, sport and medical data collection
represent important application areas of IoT. Wireless Body Area Networks (WBANs), and
more generally Body-to-Body Area Networks (BBNs), are emerging solutions for the mon-
itoring of people’s behavior and their interaction with the surrounding environment. These
networks represent a key building block of the IoT paradigm. In this context, we tackle two
major problems, which are intrinsic to WBANs: the optimal topology design problem and
the interference mitigation problem. These two problems are described in Section 2.1 and
Section 2.2, respectively.

2.1 Optimization and Reliable data communication in Wireless
Body Area Networks

Reliable body-aware communication and routing protocols are of great importance in health-
care applications. Therefore, we have investigated in [7, 8] the optimal design of wireless
body area networks by studying the joint data routing and relay positioning problem, in or-
der to increase at the same time communication reliability and network lifetime. To this
end, we have proposed an integer linear programming model, which optimizes the number
and location of relays to be deployed on the body and ensures reliable data delivery towards
the sink, minimizing both the network installation cost and the energy consumed by wire-
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less sensors and relays. This problem has been further tackled in [9] taking into account
the WBAN’s mobility as well as different body postures’ scenarios, such as standing, sitting
and walking. It is worth noting that this work was conducted by Dr. Javier Salazar during
his Master (“Master Informatique 2ème année”) under my supervision, with collaboration
with other colleagues from University of Ottawa (Prof. Ahmed Karmouch and Dr. Abdallah
Jarray). 1

Hereafter (in Subsection 2.1.1), I will develop one of my main contributions presented
in [7, 8, 9], which is the optimal, energy-aware WBAN topology design model.

2.1.1 Energy-aware Topology Design for Wireless Body Area Networks

In this work, we consider a WBAN scenario, which is illustrated in Figure 2.1, where the
body is in a standing position with arms hanging along the side. Biosensors are placed on
the body for data collection, and they communicate wirelessly with a sink node through a
set of special nodes, called relays. Such relays form a wireless backbone network which
transports the data collected by biosensors to the sink. Hence, the wireless body area net-
work is composed of three types of nodes: the biosensors, the sink node (which collects and
processes data from all sensors) and the relays. We assume that biosensors can share the
same radio spectrum in a time division multiple access manner, and therefore, there is no
interference between such wireless devices within a single WBAN [32, 33, 34, 35]. The pro-
posed optimization framework for the Stand scenario represented for us a starting point for
understanding the impact of the WBAN topology on energy-efficiency and network lifetime,
and it can be easily extended to more general or dynamic WBAN scenarios.

Our model aims at minimizing at the same time the total network installation cost (i.e.,
the total number of relays) and the overall energy consumed by the network, while ensuring

1This work was published in IEEE Globecom 2013: J.Elias, A. Jarray, J. Salazar, A. Karmouch, A. Mehaoua,
A Reliable Design of Wireless Body Area Networks, in Proceedings of IEEE Globecom 2013, Atlanta, GA,
USA, December 2013 (DOI: 10.1109/GLOCOM.2013.6831489).
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Figure 2.1: WBAN topology with 13 sensors, and the corresponding tree topology under the
multi-hop approach.
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full coverage of all sensors and effective routing of medical data towards the sink node.
To calculate the energy consumed by a wireless node (either a sensor or a relay), we

assume that the sensing energy and the processing energy are negligible with respect to com-
munication energy (this assumption is commonly adopted in the literature). Therefore, the
total energy consumption of a node is represented by the total transmission and reception en-
ergy. Hence, the energy consumed by the whole network is simply the sum of the total energy
consumed by all wireless nodes. The energy the radio dissipates to run the circuitry for the
transmitter and receiver are denoted by ETXelec and ERXelec, respectively. Eamp(nij) rep-
resents the energy for the transmit amplifier, and Dij is the distance between nodes i and j.
The transmission energy can therefore be computed as w[ETXelec +Eamp(nij)D

nij

ij ], while
the reception energy is wERXelec, where w is the total number of transmitted/received bits.

Before presenting the proposed model in a nutshell, let us first introduce some notations.
Let S = {1, . . . , s} denote the set of sensors, P = {1, . . . , p} the set of Candidate Sites
(CSs) where relays can be positioned, and N = {1, . . . , n} the set of sinks. We assume that
we may have several sinks that can collect and process the data, thus making the model more
general. The cost associated with installing a relay in CS j is denoted by cIj , and its capacity
is denoted by vj , ∀j ∈ P . Furthermore, the traffic generated by sensor i towards sink k is
denoted by wik, i ∈ S, k ∈ N .

Decision variables of our problem include:

• Sensor assignment variables xij , i ∈ S, j ∈ P :

xij =

{
1 if sensor i is assigned to a relay installed in CS j
0 otherwise

• Relays’ installation variables zj , j ∈ P :

zj =

{
1 if a relay is installed in CS j
0 otherwise

• Flow variables fkjl, which denote the traffic flow routed on link (j, l) destined to sink
k ∈ N . The special variables f tjk denote the total traffic flow between the relay in-
stalled in CS j and the sink k.

Therefore, the objective function, which accounts for the total installation cost and the
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total energy consumption, is defined as:

Min

{∑
j∈P

cIjzj + α
( ∑
i∈S,j∈P,k∈N

wikxij(ETXelec + Eamp(nij)D
nij

ij )+

+
∑

i∈S,j∈P,k∈N
wikxijERXelec +

∑
j,l∈P,k∈N

fkjl(ETXelec + Eamp(njl)D
njl

jl )+

+
∑

j∈P,k∈N
f tjk(ETXelec + Eamp(njk)D

njk

jk ) +
∑

j,l∈P,k∈N
fkjlERXelec

)}
(2.1)

More in detail, the first term,
∑

j∈P c
I
jzj , takes into account the relay nodes installa-

tion cost, while the second term represents the total energy consumed by the network (re-
lays and sensors), including the transmission and reception energy, α being a parameter that
permits to give more weight to one component with respect to the other. For large α values,
the first component becomes negligible and the model minimizes only the energy consumed
by the network; on the other hand, for small α values the model minimizes the relays’ in-
stallation costs. Hence, α should be set carefully in order to guarantee both low energy
consumption and a small number of installed relays, as we will show in the Performance
Evaluation section.

The energy-aware WBAN design (EAWD) model includes the set of constraints outlined
in the following:

• Coverage constraints: These constraints are used to ensure full coverage of all sensors.
It is worth noting that sensor i can be covered by CS j only if a relay is installed in j
and i can be connected to j (relay j is in the communication range of sensor i).

• Flow conservation constraints: they define the flow balance in a relay node j for all the
traffic destined towards sink node k. These constraints are very similar to those adopted
for classical multicommodity flow problems. Note that these constraints define the
multi-hop paths (i.e., the routing) for all the traffic that is transmitted in the WBAN.

• Connectivity constraints: they define the existence of a link between CS j and CS l, de-
pending on the installation of relays in j and l and the connectivity parameters between
CS j and CS l. These latter may depend on the proximity of CSs j and l.

• Capacity constraints: they impose, for each relay node j, that the ingress traffic (from
all covered sensors and neighbors) serviced by such network device does not exceed
its capacity vj .

• Proximity constraints: they enforce each sensor to be assigned to the closest installed
relay.

• Integrality constraints for the binary decision variables.
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Note that we can consider alternative formulations to this model. For example, we
can easily take into account the requirement that sensors must be connected to more than
one relay, for redundancy. Furthermore, a constraint on the total number of relays that
can be installed (or, alternatively, on their total installation cost) can be easily introduced
(
∑

j∈P zj ≤ N ).
We further observe that our model can be easily extended taking into account sensor

positioning. In fact, if there exist also several candidate sites where to place sensors, the
extended model can decide at the same time the optimal number and positions of sensors and
relays, as well as the traffic routing, in order to minimize further the energy consumed by the
network.

Performance Evaluation

We evaluate the performance of our model considering the WBAN topology depicted in
Figure 2.1. For the multi-hop approach, we assume that the routes from the sensors to the
sink are those illustrated by straight lines on the left-hand side of the figure, and hence the
corresponding tree topology is the one shown on its right-hand side. The distances (in meters)
between sensors and the sink for the single-hop case, and between sensors and the nearest
node for the multi-hop case are given in Table 2.1.

We further assume that candidate sites for placing relays are chosen uniformly at ran-
dom on the surface of ellipsoidal areas, along the clothes of the patient, as illustrated in
Figure 2.2. However, it is noteworthy that relays, besides biosensors, should be placed on the
human body in an intelligent manner without causing any discomfort for the person, with re-
duced disturbance to her/his daily activities. For example, in the case of e-health applications
seeking continuous monitoring of chronically ill patients, it would be impractical to place a
sensor/relay on the stomach or on the back, thus limiting significantly their daily activities,
like sitting and sleeping. Hence, these physical constraints are accurately considered in the
choice of candidate areas while designing our wireless body area network.

We compare our model’s performance to that of the single-hop, multi-hop and Relay
Network approaches [36, 37], in terms of the energy consumption and the number of relays
installed in the WBAN. The single-hop approach consists in transmitting all data directly
from each sensor to the sink node. In the multi-hop approach, the traffic is relayed by inter-
mediate sensor nodes towards the sink. The Relay Network approach aims at installing relays
in the WBAN until each sensor and relay have at least one relay node in line of sight.

Table 2.2 reports the average value of the total energy (Etot), the energy consumed by
each sensor (Es), and the number of relays installed in the WBAN, using our Energy-Aware
WBAN Design (EAWD) model (with p = 200 CSs) and under the single-hop, multi-hop and
Relay Network [37] approaches.

It can be observed that the EAWD model reduces consistently both energies Etot and Es
with respect to the single-hop and multi-hop approaches. This is due to the beneficial effect
of installing relays for reducing the energy consumption: in fact, the total energy consumed
by the network without deploying relays is in average 127.74 and 4.202 µJ/bit for the single
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Figure 2.2: Candidate sites for placing relays are chosen uniformly at random on the surface
of ellipsoidal areas, along the clothes of the patient.

and multi-hop approaches, respectively, while the installation of relays permits to decrease
such values significantly. On the other hand, if we focus on the energy consumed by each
sensor to send one bit of traffic to the sink, we can observe that, with our model, such energy
is significantly lower (0.017 µJ) than the one obtained with the single-hop (9.826 µJ) and
multi-hop (0.323 µJ) approaches.

Note that our model chooses in average 11 relays, among 200 candidate sites, to route one
bit of traffic from all sensors to the sink, consuming in average 1.923 µJ/bit. As for the Relay

Table 2.1: Distances (in meters) between sensors and the sink for the single-hop case, and
between sensors and the nearest node for the multi-hop case.

Sensor A B C D E F G H I J K L M
Single-hop 0.6 0.3 0.2 0.5 1.2 0.6 0.7 0.6 0.8 1.0 0.8 0.8 1.5
Multi-hop 0.6 0.3 0.2 0.5 0.6 0.3 0.2 0.1 0.3 0.6 0.4 0.6 0.6

Table 2.2: WBAN scenario: Total energy per bit consumed by (1) the whole network and (2)
each sensor, and (3) number of relays installed in the WBAN (in average), in the single-hop,
multi-hop, Relay Network approaches and with the EAWD model.

model Etot (µJ/bit) Es (µJ/bit) NR

Single-hop 127.740 9.826 -
Multi-hop 4.202 0.323 -

Relay Network 1.383 0.017 22
EAWD (p = 200) 1.923 0.017 11
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Network approach, 22 relays are installed in the WBAN with a total energy consumption
equal to 1.383 µJ/bit. The number of relays NR with this latter approach increases dramat-
ically with the number of sensors, and in some WBAN scenarios it is impractical to have a
large NR which may limit the activity or mobility of the patient. For example, to relay the
data of an additional sensor situated far away from the sink (i.e., at 1.5 m from the sink), the
Relay Network approach should install 4 additional relays (obtaining in total 26 relays), thus
limiting the patient’s movement; on the contrary, by using our model we do not need to install
additional relays, but of course at the cost of slightly higher per-relay energy consumption.

Summary. Our energy-aware WBAN design model guarantees that all biosensors con-
sume the least possible energy (0.017 µJ/bit), minimizing at the same time the number of
relays (installing 50% less of relays with respect to the Relay Network approach) at the cost
of slightly higher energy consumption for relays. We can conclude that the EAWD model
provides a good compromise between the energy consumption and the number of relays in-
stalled in the WBAN, thus improving the patient comfort and mobility.

To conclude this section, I would like to underline that we have also tested the sensitivity
of our model to different parameters like the number of candidate sites and biosensors, the
traffic demands, as well as the α value in objective function (2.1), which permits to express a
trade-off between planning cost-effective and energy-efficient networks. The obtained results
are discussed in detail in [7, 8, 9] and are not reported in this manuscript for the sake of
brevity.

2.2 Interference Mitigation in Body-to-Body Area Networks

We now broaden our vision from a single WBAN to a scenario where multiple such net-
works co-exist and communicate. A Body-to-Body Area Network (BBN) consists of sev-
eral WBANs, and each of which is composed of sensor nodes that are usually placed in the
clothes, on the body or under the skin. These sensors collect information about the person and
send it to the sink (i.e., a Mobile Terminal or a Personal Digital Assistant, PDA), in order to
be processed or relayed to other networks (an example of BBNs is illustrated in Figure 2.3).
In BBNs, several transmission technologies like 802.11 and 802.15.4, that share the same
unlicensed band (namely the industrial, scientific and medical (ISM) band), coexist, increas-
ing dramatically the level of interference and, in turn, negatively affecting network’s perfor-
mance. For this reason, in [12, 13, 14, 15, 16] we have investigated the Cross-Technology
Interference Mitigation (CTIM) problem caused by the utilization of different transmission
technologies that share the same radio spectrum. This problem was studied by first con-
sidering in [12, 13] a centralized interference minimizing optimization framework. A set
of integer linear programming models and heuristics (greedy, tabu search, sequential fixing)
have been developed to obtain optimal and efficient sub-optimal interference mitigation solu-
tions. Next, in [14, 15, 16], we have addressed the CTIM problem by proposing a distributed
approach based on Game Theory and the Nash equilibrium concept. The proposed game
theoretic approach performs channel allocation in two stages: at the BBN stage for inter-
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Figure 2.3: Two Body-to-Body Area Networks (BBNs) corresponding to two different groups of people (i.e.,
blue and red) are using the same unlicensed spectrum.

WBAN communications (WiFi-802.11 channel allocation stage) and at the WBAN stage for
intra-WBAN communications (ZigBee-802.15.4 channel allocation stage). Our Nash equi-
librium solutions were compared to relevant state-of-art power control solutions [38, 39],
exhibiting significantly improved performance.

I would like to emphasize that this latter problem was deeply investigated under my
supervision by Ph.D. student Dr. Amira Meharouech, who defended her Ph.D. in December
2016. Furthermore, works [10, 11] have been investigated while supervising Dr. Hadda
Ben Elhadj within a collaboration with LETI Laboratory, Sfax University, Tunisia. Dr. Ben
Elhadj has visited us at the LIPADE Lab. for 3 months in 2013.

In Subsection 2.2.1, I will present the problem of cross-technology interference mitiga-
tion in BBNs that we have modeled and solved using a distributed (Game Theoretic) ap-
proach.

2.2.1 Interference mitigation in body-to-body networks: A game theoretical
approach

In this section, we first present the body-to-body network model, then, we introduce the main
ideas behind our interference mitigation game theoretical approach and finally, we illustrate
a numerical example showing the good performance of our proposal.

Body-to-Body Network Model

We consider a BBN scenario composed of a setN of WBANs, which are located in the same
geographical area (i.e., a medical center, a rest or a care home). We assume that each WBAN
is equipped with a wearable Mobile Terminal (MT)2, that uses both the 802.15.4 protocol
(i.e., ZigBee) to communicate with the sensor nodes within its WBAN, and the IEEE 802.11

2The WBAN and her/his corresponding Mobile Terminal will be used as synonyms throughout this section.
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wireless standard (i.e., WiFi) to create a backhaul infrastructure for inter-WBANs’ commu-
nications. We further assume that all WBANs share the same unlicensed 2.4 GHz Industrial,
Scientific and Medical (ISM) band, and we denote by Cw and Cz , respectively, the set of
WiFi and ZigBee channels in this band. Since we are also assuming that WBANs can move
and interact with their surrounding environment, we find ourselves in a quite dynamic BBN
scenario, and therefore, we decide to consider the notion of time and divide the operating
time of the whole system into a set T of consecutive epochs, and during each epoch t ∈ T
we suppose that the network topology and environment conditions do not change.

The set Lw(t) represents all WiFi unidirectional links established by mobile terminals,
due to the interaction among WBANs, during the epoch t ∈ T ; Lw(t) may vary between two
consecutive epochs due to WBANs’ mobility. Similarly, the set Lz represents the ZigBee
unidirectional links used for intra-WBAN communication among the sensors and does not
change with time.

In summary, our network model has focused on the following relevant points:

• Every single WBAN’s MT, equipped with one WiFi antenna and one ZigBee antenna,
should dispose of non overlapping WiFi and ZigBee channels.

• No interference is present within a WBAN; we assume a TDMA-based medium access
control implemented in each WBAN to deal with collisions. Note in addition that there
is no interference between adjacent ZigBee channels since there is no overlapping.

• As in [40, 41], and differently from [13, 42, 43, 44, 45], which considered the binary
model to represent overlapping between channels, the degree of interference between
(partially) overlapping WiFi channels m and n is a fractional value, given by the fol-
lowing expression:

wmn =

∫ +∞
−∞ Fm(w)Fn(w)dw∫ +∞
−∞ F 2

m(w)dw
, (2.2)

where Fm(w) and Fn(w) denote the Power Spectral Density (PSD) functions of the
band-pass filters (i.e., raised cosine filters) for channels m and n, respectively, which
can be obtained from the channels’ frequency responses.

• The interference between overlapping WiFi and ZigBee channels c1 and c2 is repre-
sented by a binary value: ac1c2 = 1 if WiFi channel c1 overlaps with ZigBee channel c2
(0 otherwise).

• To preserve the network connectivity within a BBN, we assume that its WBANs WiFi
interfaces are tuned on the same channel. Therefore, we use the |Lw| × |Lw| matrix
B(t), whose element bij is a binary value: bij = 1 if WiFi links i and j belong to the
same BBN at time epoch t ∈ T (0 otherwise).

• Finally, WBANs use a higher transmission power on the inter-WBAN communication
channel than on the channel used for intra-WBAN communications (i.e. pw >> pz).
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Note that data transmissions within ZigBee networks can completely starve due to
WiFi communications, which use 10 to 100 times higher transmission power [13].

Signal-to-Interference-Ratio (SIR)

In order to minimize the total interference within BBNs involving several wireless technolo-
gies (WiFi and ZigBee in our scenario), it is advantageous to observe every interference
component separately, thus we can specify two-kind interference scenarios:

• The Mutual interference:

– WiFi-WiFi interference at the MT receiver, that occurs while receiving collected
data from a nearby WBAN of the same BBN and interfering with adjacent BBNs’
WiFi links. Such component includes as well the co-channel interference.

– ZigBee-ZigBee interference at the MT receiver, that happens when a ZigBee link
of a WBAN interferes with a ZigBee link of another WBAN belonging to the
same or to a different BBN, when they are allocated the same channel.

• The Cross-Technology interference: WiFi-ZigBee, among adjacent WBANs, where
each WBAN (MT) is communicating with other WBANs over a WiFi link and is prone
to interference from nearby ZigBee links, and vice versa.

The Interference issue and the Signal-to-Interference-Ratio (SIR) metric are tightly re-
lated. Thus, in this work, we determine the SIR in decibel format by:

SIRi(t)(dB) = 10log(
gii(t)p

i∑
j 6=i gij(t)pj

), (2.3)

where pi is the transmission power of transmitter i, gij(t) is the link gain from transmitter j
to receiver i at time epoch t. Since WBANs can move in their surrounding environment, the
links’ gains gij(t) vary over time, and the SIR in turn has been further expressed as a function
of time t. The gain parameters are calculated taking into account the average channel gain
evaluated at the reference distance d0 = 1 m and with a path loss exponent n(α), according
to the following formula [46]:

gij(t)|dB = G(d0, α)|dB − 10× n(α)× log10(d/d0), ∀i, j ∈ Lw(t) ∪ Lz (2.4)

A Two-Stage Cross-Technology Interference Mitigation game

The lack of a centralized control and prioritization of access to the radio spectrum, in ad-
dition to the restricted knowledge of the global network status, motivate us to model our
cross-technology interference mitigation problem by using Game Theory. We propose a two-
stage interference mitigation game, which is divided into the BBN-stage/WiFi-level game and
WBAN-stage/ZigBee-level game, in which players are social and hence they consider their
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own payoffs as well as those of their neighbors, to optimize their strategies while relying on
their surrounding network information.

More specifically, our two-stage socially-aware interference mitigation game proceeds as
follows:

• At a first stage, each BBN takes a decision on the WiFi channel that should be assigned
to his WiFi transmission links, ensuring minimal interference with his surrounding
environment, through a local interaction game with his neighboring BBNs. More pre-
cisely, each group of WBANs communicating between each other (i.e., each sub-BBN)
is represented by a special player (a delegate or a leader of the group) who decides
which WiFi channel to choose. Indeed, to ensure network connectivity all WBANs
within the same sub-BBN should be tuned to the same WiFi channel, and we consider
this special player that acts on behalf of the entire sub-BBN.

• At the second stage, given the WiFi channel assignment for each BBN, a local interac-
tion game takes place among the WBANs belonging to the same BBN. After playing
this game, each WBAN (more precisely, each MT) will be assigned a ZigBee channel
to his ZigBee radio interface, and such assignment guarantees the minimal interference
of the WBAN with his neighboring WBANs.

Hence, in the proposed game, the players are the set of links L(t) = Lw(t) ∪ Lz asso-
ciated with the set N = {1, ..., n} of WBANs. More specifically, each player is represented
by a couple of links (l, h), such that l ∈ Lw(t) and h ∈ Lz are a WiFi and a ZigBee link
corresponding to a given WBAN i ∈ N assimilated to its MT. At time epoch t ∈ T , each
player chooses a couple of strategies (sl(t), sh(t)) ⊂ S(t), such as sl(t) is the strategy to
allocate a WiFi channel c1 ∈ Cw to the WiFi link l ∈ Lw(t) at time epoch t ∈ T , denoted
by xlc1 , and sh(t) is the strategy to allocate a ZigBee channel c2 ∈ Cz to the ZigBee link
h ∈ Lz , denoted by yhc2 . S(t) is obviously the set of the total channel allocation strategies of
all players of the BBN scenario.

Thereby, we can define the BBN-stage/WiFi-level game (G1) as follows:

• Players: the set of BBNs represented by their delegates, such as a delegate player per
sub-BBN. For the BBN-stage, the player is assimilated to its WiFi link l.

• Strategies/actions: sl(t) = xlc1(t), the strategy to choose a WiFi channel c1 for WiFi
link l from the set of available channels in Cw.

• Utility function: To ensure a realistic representation of the game, we use the worst SIR
values perceived by the two radio interfaces, WiFi and ZigBee, as utility function.

Hereafter, we determine the SIR, previously given in Equation (2.3), that we extend to
consider interfering transmitters using different technologies. It is worth noting that Equa-
tion (2.5) can be easily extended to more than two radio technologies, considering further for



CHAPTER 2. OPTIMAL DESIGN AND INTERFERENCE MITIGATION IN WBANS 17

example Bluetooth. However, to simplify the analysis we conduct the study with only two
components, corresponding to WiFi and ZigBee, respectively. Whence, the SIR (in dB) of
the player l ∈ Lw, considering the WiFi interface, is given by:

SIRw(xlc1)(t) = 10log(
gllp

l
w

Iwc1(xlc1) + Iw(xlc1) + Iwz(xlc1)
), (2.5)

where
Iwc1(xlc1): Co-channel interference from WiFi links of other sub-BBNs sharing WiFi chan-

nel c1 with WiFi link l.
Iw(xlc1): Mutual interference from WiFi links of other sub-BBNs using WiFi channels

that overlap with c1.
Iwz(xlc1): Cross-interference from ZigBee links using ZigBee channels overlapping with

WiFi channel c1.
gll is the channel gain of link l and plw is the WiFi transmit power.

Similarly, the WBAN-stage/ZigBee-level game (G2) is defined as follows:

• Players: set N of WBANs. The player is assimilated to his ZigBee link h.

• Strategies/actions: sh(t) = yhc2(t), the strategy to choose a ZigBee channel c2 for
ZigBee link h from the set of available channels in Cz .

• Utility function: is defined as a function of the SIR at the ZigBee interface, which is
used for intra-WBAN communications. Such SIR (denoted as SIRz , in dB) is given
by:

SIRz(yhc2)(t) = 10log(
ghhp

h
z

Iwz(yhc2) + Iz(yhc2)
), (2.6)

Iwz(yhc2) represents the cross-technology interference caused by mobile terminals using
WiFi channels that overlap with the ZigBee channel c2 on which WBAN link h is tuned.

Iz(yhc2) accounts for the co-channel interference of nearby WBANs sharing the same
ZigBee channel c2 of player h.
ghh is the channel gain of link h and phz is the ZigBee transmit power.

Before illustrating a numerical example for the game evaluation, we would like to un-
derline that the BBN-stage and the WBAN-stage games are potential games, and therefore,
the existence of at least one pure-strategy Nash Equilibrium (NE) and the convergence of a
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Best Response3 algorithm to a NE is guaranteed [47, 48]. Indeed, potential games have two
appealing properties: they admit at least one pure-strategy NE which can be obtained through
a best-response dynamics carried out by each player, and they have the Finite Improvement
Property (FIP), which ensures the convergence to a NE within a finite number of iterations.
We refer the reader to our works [14, 15, 16] for all the details and the demonstrations re-
garding our games’ properties.

A Numerical Example

We now illustrate and discuss some numerical results obtained in an example of a BBN
scenario, where 40 mobile WBANs are randomly deployed in a 1000 × 1000m2 area, and
grouped into four overlapping BBNs (Figure 2.4). The mobility is simulated using the com-
mon random way-point model [49]. We consider the first five overlapping WiFi channels
of the ISM band (Cw = {1, 5}) and the whole band of ZigBee channels (Cz = {11, 26})
in order to simulate the mutual and the cross-technology interference scenarios. To com-
pute channel gains, we refer to the BBN-specific channel gain model in [46]. The WiFi and
ZigBee transmission powers are set to 100 mW and 1 mW, respectively.

Figure 2.4: Simulation scenario for N=40 WBANs

The curves on Figure 2.5 illustrate the dynamics of the Best Response. More specifically,
Figure 2.5a and Figure 2.5b show the average WiFi SIR (SIRw in Equation (2.5)) and ZigBee
SIR (SIRz in Equation (2.6)), respectively. Figure 2.5c further shows the convergence of the
SIR at the ZigBee interface of a subset of players under the Best Response algorithm.

We notice at the Nash Equilibrium that the worst WiFi SIR (SIRw of BBN4 stabilizes
at 9.5 dB), measured with the standard transmission power of 20 dBm (100 mW) is always
above the receiver sensitivity of most commercial cards (the lowest receiver sensitivity for

3The Best Response of a player is an action (i.e., a strategy) that maximizes its objective function/payoff for
a given action tuple of the other players, subject to the played game’s constraints if any.



CHAPTER 2. OPTIMAL DESIGN AND INTERFERENCE MITIGATION IN WBANS 19

0 1 2 3 4 5
9

10

11

12

13

14

15

16

17

18

19

Iterations

A
ve

ra
ge

 S
IR

w
 b

y 
B

B
N

 (
dB

)
BBN1
BBN2
BBN3
BBN4

(a) Average WiFi SIR (SIRw)

0 1 2 3 4 5 6 7

40

30

50

35

45

Iterations

A
ve

ra
ge

 S
IR

z 
by

 B
B

N
 (

dB
)

BBN1
BBN2
BBN3
BBN4

(b) Average ZigBee SIR (SIRz)

0 2 4 61 3 5 7
0

20

40

60

80

10

30

50

70

90

Iterations

S
IR

z 
of

 p
la

ye
rs

 (
dB

)

players of BBN1
players of BBN2
players of BBN3
players of BBN4

(c) SIRz of a subset of players

Figure 2.5: Dynamics of the Best Response for each BBN, with N=40 WBANs

the Atheros chipset is −95 dB), even when considering other effects like fading and thermal
noise. The same conclusions are observed for the worst ZigBee SIR measured by all four
BBNs (i.e., the WBAN that experiences the worst SIR in a BBN), which stabilizes at 40 dB
for BBN3 after a small number of iterations. Note that the worst SIR measured at the ZigBee
interface is higher than the value measured at the WiFi interface due to the small number of
WiFi channels used in the simulation, thus resulting in highly conflicting WiFi transmissions.
Yet, the performance of the Best Response is ensured since it provides a rather fair, socially-
aware channel allocation, so that both WiFi and ZigBee SIR stabilize at quite good values at
the Nash Equilibrium. Finally, we close this section by underlining that we further compare
our distributed (NE) solutions to the distributed power control algorithm proposed in [38] and
to the joint relay selection and transmit power control algorithm proposed in [39], demon-
strating the good performance of our game with respect to these latter. The corresponding
results are discussed in detail in our work [14].



Chapter 3

Spectrum access in Cognitive Radio
and TV White Space Networks: A
Game Theoretical Perspective

The frequency spectrum is the scarcest resource for wireless communications, and it is be-
coming more and more so over the last few years with the rapid proliferation of smartphones,
tablets and other smart mobile devices, as well as the emergence of IoT. However, it may re-
sult underutilized: at any given time and location, much of the prized spectrum lies idle. For
this reason, cognitive radio networks have emerged as a solution to deliver high bandwidth
to mobile users, ensuring better utilization of the available (idle) spectrum, thus reducing its
wastage. Similarly, with the aim to better utilize the spectrum and make available more radio
resources for mobile users, the Federal Communications Commission (FCC) has recently al-
lowed wireless devices to opportunistically access the unused spectrum in the TV bands (also
called “white space”). It is in this context that we tackled two main problems, presented here-
after, 1) spectrum access/network selection in cognitive radio scenarios (Section 3.1) and 2)
distributed spectrum management in TV White Space networks (Section 3.2).

For the sake of space, in this chapter I chose to describe in more detail one of my main
contributions to the problem of distributed spectrum management in TV White Space net-
works 1.

3.1 Spectrum Access, network selection and pricing in Cognitive
Radio Networks

Cognitive Radio Networks (CRNs), also referred to as xG networks, are envisioned to de-
liver high bandwidth to mobile users via heterogeneous wireless architectures and dynamic

1This choice is further justified by the fact that this work is conducted under an international collaboration
with professor Marwan Krunz from the University of Arizona.

20
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spectrum access techniques. In CRNs, a Primary (or licensed) User has a license to operate
in a certain spectrum band; his access is generally controlled by the Primary Operator and
should not be affected by the operations of any other unlicensed user. On the other hand,
the Secondary Operator has no spectrum license; therefore, Secondary Users must imple-
ment additional functionalities to share the licensed spectrum band without interfering with
primary users.

An example scenario is illustrated in Figure 3.1. In [20], we considered a CR scenario
which consists of primary and secondary networks, as well as a large set of cognitive users,
and we addressed the joint pricing and network selection problem. The problem was for-
mulated as a Stackelberg (leader-follower) game, where first the Primary and Secondary
operators compete with each other and set the network subscription price to maximize their
revenues. Then, users perform the network selection process, deciding whether to choose the
primary network and pay more for a guaranteed service, or use a cheaper, best-effort sec-
ondary network, where congestion and low throughput may be experienced. In this regard,
we studied both practical cases where (1) the Primary and Secondary operators fix access
prices at the same time, and (2) the Primary operator exploits his dominant position by play-
ing first, anticipating the choices of the Secondary operator. Then, network users react to the
prices set by the operators, choosing which network they should connect to, therefore acting
either like primary or secondary users.

In [18, 19], we studied the spectrum access problem in CRNs from a game theoretical per-
spective. More specifically, the problem was modeled as a non-cooperative spectrum access
game where secondary users access simultaneously multiple spectrum bands left available by
primary users, optimizing their objective function (i.e., minimizing a cost function). As a key
innovative feature, we modeled accurately the interference between secondary users, captur-
ing the effect of spatial reuse, and we considered both elastic and non-elastic user traffic, to
model real-time as well as data transfer applications. We determined the sufficient condi-
tions for the existence and uniqueness of the Nash equilibrium, and we derived equilibrium
flow settings. Finally, we performed a thorough numerical analysis of the proposed model,

Figure 3.1: Cognitive Radio Networks (CRNs), with Primary and Secondary Users coexisting in the same
physical environment, sharing available spectrum opportunistically.
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studying the impact of several parameters, like the number of secondary users and wireless
channels as well as the interference between secondary users, on the game efficiency.
The works described in [18, 19, 20] are conducted under a tight and fruitful collaboration
with Dr. Eitan Altman from Inria NEO team at Sophia-Antipolis.

3.2 Distributed Spectrum Management in TV White Space Net-
works

As observed before, the radio frequency (RF) spectrum is a scarce resource that has become
particularly critical with the increased wireless demand. For this reason, the FCC has re-
cently allowed for opportunistic access to the unused spectrum in the TV bands (also called
“white space”) [50, 51]. With opportunistic access, however, there is a need to deploy en-
hanced channel allocation and power control techniques to mitigate interference, including in
particular Adjacent-Channel Interference (ACI). TV White Space (TVWS) spectrum access
is often investigated in the literature [52, 53, 54] without taking into account ACI between
the transmissions of TV Bands Devices (TVBDs) and licensed TV stations. Guard Bands
are an effective solution to protect data transmissions and mitigate the ACI problem. There-
fore, in [21, 22], we have considered a scenario, illustrated in Figure 3.2, where the spectrum
database is administrated by a database operator, and an opportunistic secondary system is
composed of TVBDs, each of which is equipped with a single antenna that can be tuned to
a subset of licensed channels. This can be done, for example, through adaptive channel ag-
gregation or bonding techniques [55, 56, 57]. We have investigated the distributed spectrum
management problem in opportunistic TVWS systems using a game theoretical approach
that accounts for both adjacent channel interference and spatial reuse. TVBDs compete to
access idle TV channels and select channel “blocks” that optimize their objective function.
This function provides a tradeoff between the achieved rate and a cost factor that depends on
the interference between TVBDs. We have considered practical cases where contiguous or
non-contiguous channels can be accessed by TVBDs, imposing realistic constraints on the
maximum frequency span between the aggregated/bonded channels. We have shown that, un-
der general conditions, the proposed TVWS management games admit a potential function.
Accordingly, a “best response” strategy allows us to determine the spectrum assignment of
all players. This algorithm is shown to converge in few iterations, in most practical network
scenarios, to a Nash Equilibrium. Furthermore, we have proposed an effective algorithm
based on Imitation dynamics/learning, where a TVBD probabilistically imitates successful
selection strategies of other TVBDs in order to improve its own objective function. Numer-
ical results showed that our game theoretical framework provides a very effective tradeoff
(close to optimal, centralized spectrum allocations) between efficient TV spectrum use and
reduction of interference between TVBDs.

The rest of this chapter will be devoted to present in some detail our contributions to this
problem. Therefore, it will be organized as follows. First, we will present the system model
and the two proposed spectrum management games, and finally we will discuss a numerical
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Figure 3.2: A TV White Space scenario composed of a set of TVBDs and a TV/white space Database
operated by a third-party Database Operator (DO). The DO receives the TVBDs’ locations and then
provides them with the set of idle TV channels.

example with the aim to show the good performance of our games.

3.2.1 System Model

We consider the TV White Space scenario of Figure 3.2, where a spectrum database is ad-
ministrated by a third party Database Operator (DO). The DO serves a set N of unlicensed
TVBDs.

Potentially available TV channels include channels 2 to 51 (except channels 3, 4 and 37)
in the case of fixed TVBDs, or channels 21 to 51 (except channel 37) for personal/portable
TVBDs [50, 51].

Following the FCC’s 3rd Memorandum Opinion and Order [51], we remark that “fixed
devices may operate only on vacant TV channels that are not adjacent to occupied TV chan-
nels, while personal/portable devices may operate adjacent to occupied channels if their
maximum EIRP is reduced to no more than 40 mWatt (instead of 100 mWatt EIRP)”. Further-
more, TVBDs must incorporate a geo-location capability and a means to access the database
to retrieve a list of idle TV channels that may be used at a given location [50, 51]. They
use a fixed transmission power, i.e., power control is not applied, and they may also perform
spectrum sensing to determine the relative utilization of a given channel.

Therefore, in our work we assume that the DO first provides all TVBDs with the set of
idle, guard band, and occupied channels. Based on such information, each TVBD i chooses
at most nmax idle channels so as to optimize its objective function. Note that if the TVBD
chooses non-contiguous idle channels, it is necessary to guarantee that the distance between
the chosen channels does not exceed a given value dmax, determined by hardware constraints
and aggregation overhead.

We assume that TVBDs are located in the same geographical area, and therefore they
perceive the same TV spectrum status. Let M denote the set of idle TV channels and
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B the TV channel bandwidth in MHz (same for all channels). Figure 3.3 illustrates an
example. We classify channels into idle, busy, and guard band channels. In Figure 3.3,
channels {8, 10, 16, 17} are busy, and channels {7, 9, 11, 15, 18} are guard bands. Thus,
M = {5, 6, 12, 13, 14, 19, 20, 21, 22}.

Let di be the rate demand (in Mbps) required by TVBD i, and let rj be the maximum
data rate that can be supported by TV channel j. In fact, rj can be deterministic (ideal
channel quality) or random if we assume that channel quality varies due to multi-path fading
and shadowing, as well as due to the unpredictability of TVBDs activities. Note that under
poor channel conditions, we expect that our games will allocate more channels to TVBDs to
guarantee their minimum rate demands.

Figure 3.3: Example illustrating idle, busy, and guard band channels in the TV spectrum. The set of
idle TV channels is given asM = {5, 6, 12, 13, 14, 19, 20, 21, 22}.

3.2.2 TV White Space spectrum management games

We address the TVWS spectrum management problem in a fully distributed fashion using a
game theoretic approach. Given the spectrum status that is provided by the Database operator,
each TVBD locally selects a set of idle channels (at most nmax) for its communications so
as to optimize an objective function (3.4), which accounts for the utility perceived by using
the chosen channels and a cost term, expressed as a function of the experienced interference.

This section will first describe in details the player’s (the TVBD) objective function and
then present the two proposed games for TVWS spectrum management. Let us first define
the notation used hereafter.

Let xij , ∀i ∈ N , j ∈M be the binary decision variables defined as follows:

xij =

{
1 if idle channel j is assigned to TVBD i’s transmission
0 otherwise.

Hence, xi = {xi1, xi2, . . . , xi|M|} represents the set of channel selection strategies of TVBD i.

We denote byEj the interference matrix associated with idle channel j. Let e(j)ik be the (i,
k)th element of Ej , the interference parameter between TVBDs i and k on channel j. Note
that Ej needs not be symmetric.
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More specifically, e(j)ik , for i, k ∈ N and j ∈M, is defined as follows:

e
(j)
ik =

{
1 if TVBD i interferes with TVBD k on channel j
0 otherwise.

TVBD’s Objective Function

In this work, we focus on TVBDs characterized by a minimum data rate requirement (di)
and an elastic traffic: the goal of each device is to maximize the difference between its utility
(Ui) and cost (Ji).

We begin by illustrating the cost function Ji of TVBD i, which represents a congestion
cost that the device incurs due to its interference with other devices that operate on the same
channel j. Ji is given by:

Ji =
∑
j∈M

rjxij · [αj · (
∑
k∈N

rje
(j)
ki xkj)

βj + γj ], (3.1)

where the coefficients αj and γj are two positive numbers that model the overhead caused
by choosing a wireless channel j, and βj is a positive integer greater than or equal to 1 (the
larger is βj , the higher is the impact of interference among TVBDs). This cost function well
captures the network congestion level and it is commonly used in the literature [18, 58]. More
specifically, for each channel j we consider an increasing and convex function of the form:

αj · (
∑
k∈N

rje
(j)
ki xkj)

βj + γj (3.2)

where rjxkj is the traffic of TVBD k over channel j. We observe that (3.2) represents the
per traffic unit congestion cost experienced by the TVBD on a single channel. Therefore, the
total cost incurred by device i due to the overall network congestion is obtained by summing
the cost over all channels.

Ji represents the penalty that TVBD i pays due to interference. It is monotone in the
number of TVBDs sharing the same band, and is used to incite them to choose idle or un-
derutilized bands. In other words, this cost is naturally proposed to discourage TVBDs from
choosing “crowded” channels, thus reducing the interference. Hence, each TVBD i is better
off minimizing Ji.

As for the utility, we consider an affine utility function of the form:

Ui =
∑
j∈M

δijrjxij (3.3)

where δij is a positive parameter that represents the significance (priority) of channel j for
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TVBD i. Hence, the objective function that (elastic) TVBD i aims to maximize is given by:

OFi =Ui − Ji (3.4)

=
∑
j∈M

δijrjxij −
∑
j∈M

rjxij · [αj · (
∑
k∈N

rje
(j)
ki xkj)

βj + γj ].

It is worth noting that there is a tradeoff between minimizing the number of chosen idle
channels and minimizing the interference with other TVBDs.

Spectrum management games

We study and compare two variants of the TVWS spectrum management game:

• Game G1 (Channel Aggregation-based TVWS Spectrum Management): Given the
spectrum status, TVBDs play the game choosing at most nmax idle channels, which
are not necessarily contiguous. However, the chosen idle channels must be separated
by no more than dmax channels. This feature is used to take into account hardware
constraints and the cost of aggregating distant channels.

In G1 each player i aims at maximizing OFi in (3.4) subject to the following con-
straints:

– Rate demand constraint: ∑
j∈M

rjxij ≥ di (3.5)

– Maximum number of channels constraint (at most nmax channels can be chosen
by a TVBD): ∑

j∈M
xij ≤ nmax (3.6)

– Maximum frequency-separation constraint (which guarantees that the maximum
separation between any chosen channels j1 and j2 does not exceed dmax):

j1xij1 − j2xij2 ≤ dmax + (1− xij2) · |M|,∀j1, j2 ∈M : j1 > j2 (3.7)

– Integrality constraints:
xij ∈ {0, 1}, ∀j ∈M (3.8)

• Game G2 (Channel Bonding-based TVWS Spectrum Management): Given the spec-
trum status, TVBDs play the game choosing at most nmax contiguous idle channels.
This condition is used to minimize the system complexity (aggregation overhead, hard-
ware costs), guaranteeing a fair access to TVWS, independent of rate demands.
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In G2 player i maximizes his objective function OFi subject to constraints (3.5), (3.6),
and (3.8) defined in G1. In addition, the following single frequency block constraint
(contiguous channels) is imposed:

j1xij1 − j2xij2 ≤ nmax − 1 + (1− xij2)|M|, ∀j1, j2 ∈M : j1 > j2 (3.9)

Let us elaborate on G1 and G2, considering the example in Figure 3.3. We focus on channels 5
to 18, for simplicity. According to G1, if the TVBD can choose at most nmax = 2 idle
channels separated by a distance of at most dmax = 6, then its possible choices are: {5, 6},
{6, 12}, {12, 13}, {12, 14}, and {13, 14}. On the other hand, in G2, if the TVBD can choose
at most nmax = 2 contiguous idle channels, then it has the following alternatives: {5, 6},
{12, 13}, and {13, 14}, besides choosing each of these channels separately. Of course, the
strategy space of the TVBD in G1 is in general larger than that of G2.

Finally, we demonstrate that both games G1 and G2 exhibit desirable properties since they
are potential, and possess at least one pure-strategy Nash Equilibrium (NE). Hence, a Best
Response algorithm can be used to converge to a NE. The Best Response of a player (or a
TVBD) is an action (i.e., a set of idle channels) that maximizes its objective function OFi
for a given action tuple of the other players, subject to constraints (3.5)-(3.8) for G1, and to
constraints (3.5), (3.6), (3.8) and (3.9) for G2. The same procedure is repeated for all TVBDs
in the network, and such procedure converges iteratively to a NE of our games. To determine
the NE solutions, we have implemented three algorithms that converge to these latter in few
iterations:

1. a Best Response algorithm,

2. the Krasnoselskij algorithm [59, 60], which is similar to the Best Response algorithm,
however, only a fraction (i.e., 20%, 30%) of TVBDs change their strategies at the same
time at each iteration to improve their objective function and

3. an Imitation algorithm, where a player can imitate another player chosen randomly, by
playing the same strategy at the next iteration of the algorithm.

All the details regarding the pseudo-code of the above three algorithms as well as the exten-
sive numerical evaluation can be found in [22]. A numerical example is illustrated hereafter
in order to show that our three TVWS spectrum management algorithms perform quite good
in terms of the quality of the obtained solution and the number of iterations to converge to
the NE solution.

A numerical example

We consider here a TV white space system composed ofM TV channels andN fixed TVBDs
randomly scattered over a 1500 meter× 1500 meter area. The transmission power of a TVBD
is fixed to 20 dBm, the bandwidth of each TV channel is 6 MHz, and the rate rj supported
by TV channel j can be either deterministic or vary according to a random distribution. In
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Figure 3.4: Set of TV channels ({21, . . . , 51} \ {37}) considered in the numerical analysis.

this example, we assume that rj is deterministic and equal to 10 Mbps. Figure 3.4 illustrates
an example of the TV spectrum that we consider in our numerical analysis.

We assume that TVBDs rate demands di are homogeneous and equal to 20 Mb/s, and we
consider two cases for the set of idle channels: case (i)M consists of all idle channels of the
spectrum depicted in Figure 3.4, while in case (ii)M = {21, 22, 28, 29, 30, 35, 36, 38, 39}.
The aim behind considering case (ii) is to study the system’s behavior when a smaller number
of idle channels is available for TVBDs, thus increasing the interference. We further assume
a free-space path loss model between any two unlicensed devices. We vary the number of
TVBDs in the range [1, 20] to show the impact of this parameter on the interference among
the devices.

Parameters αj , βj , γj , and δij are set to 1, 1, 0, and 100, respectively, for all i ∈ N and
channels j ∈ M, dmax = 10, nmax = 3 and λ = 0.2 (i.e., 20% of players change strategy
in each iteration of the Krasnoselskij-based DSM algorithm, K-DSM).

Note that the SBR-DSM algorithm (sequential best response dynamics) is guaranteed
to converge in both games G1 and G2 in a finite number of iterations, due to the fact that
we demonstrated in [22] that these games are potential. In practice we observed that, in
all the scenarios we simulated and for all parameters settings, the distributed algorithms we
considered in this paper always converge in few iterations to equilibrium conditions. More
specifically we observed that, in the worst case, up to 5 iterations are needed for a TVBD to
converge to a stable point, while in average less than 3 iterations are sufficient.

Figure 3.5(a) shows the average value of the objective function obtained by all the pro-
posed algorithms (SBR-DSM, BR-DSM, K-DSM and IM-DSM, as summarized in Table 3.1)
for game G1 (solid lines in the figure) and game G2 (dotted lines) as a function of the total
number of players (unlicensed devices), considering the entire set of idle channels (case (i)).
Similarly, Figure 3.5(b) shows the same performance measure when only a subset of idle
channels is available (case (ii)).

Several key findings can be drawn from the observation of these results, namely in terms
of the impact of the number of TVBDs and idle TV channels, which we discuss in the fol-
lowing.
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Acronym Description
SBR-DSM Sequential Best Response-based DSM
BR-DSM Best Response-based DSM
K-DSM Krasnoselskij-based DSM
IM-DSM Imitation-based DSM

Table 3.1: Summary of the Distributed Spectrum Management (DSM) algorithms considered
in our study.

Effect of the number of TVBDs: As expected, it can be seen in Figures 3.5(a) and 3.5(b)
that the objective function (OFi average value) decreases when increasing the number of
players, and this is in fact due to the increase in the interference between TVBDs. It can also
be observed that SBR-DSM and K-DSM have very similar trends for both games, and they
exhibit better performance values than IM-DSM and BR-DSM, especially when the number
of players is higher than 5. SBR-DSM shows the best performance among all the distributed
algorithms. In fact, at each iteration of the algorithm, each device chooses the best channels
knowing those chosen by the previous players in the same round or iteration. Therefore, since
this algorithm relies on a most up-to-date information, it is not surprising that the sequential
BR algorithm exhibits the best performance.

Effect of the number of idle TV channels: We observe from Figure 3.5(a) and Fig-
ure 3.5(b) that a player gets, on average, in case (ii) an objective function value lower than that
perceived in case (i). For example, under SBR-DSM and K-DSM, when game G2 is played,
each TVBD achieves an objective function value under case (i) that is, on average, 1.3 times
higher than the one obtained under case (ii). This is justified by the fact that in case (i) the set
of players’ strategies is larger than the one in case (ii) and hence TVBDs can better optimize
their performance in the former case. This is particularly true for SBR-DSM and K-DSM;
IM-DSM however exhibits the same trend in the two cases, since the imitation algorithm is
more sensible to the number of players than the size of the set of strategies that players can
explore.

Effect of traffic distributions: We further measure the impact of the traffic pattern by
considering different realistic distributions for the traffic demand. More specifically, we con-
sider: a) deterministic traffic with rate of 20 Mb/s, b) uniformly distributed traffic with rate
between 10 and 30 Mb/s, and c) truncated normally distributed traffic with mean and standard
deviation of 20 and 5 Mb/s, respectively. Figure 3.6(a) and Figure 3.6(b) show the average
value of OFi versus the number of TVBDs for uniformly distributed traffic2. By comparing
Figures 3.5 and 3.6, it can be observed that the impact of different traffic distributions on
all the proposed algorithms is limited (i.e., practically almost negligible). Therefore, we can
conclude that our proposed algorithms are quite robust against different traffic patterns.

2Similar results were obtained when we assume that the traffic follows a truncated normal distribution.
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(a) Deterministic traffic, dmax=10, case (i)
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(b) Deterministic traffic, dmax=10, case (ii)

Figure 3.5: Static TVWS scenario: Average objective function values (the players’ total utility) as a
function of the number of TVBDs ([1, 20]), and for two different sets of available idle channels (traffic
demand di = 20 Mb/s).
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(a) Uniform dist., dmax=10, case (i)
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Figure 3.6: Static TVWS scenario: Average objective function values (the players’ total utility)
versus the number of TVBDs ([1, 20]), and for two different sets of available idle channels (uniformly
distributed traffic with rate between 10 and 30 Mb/s).

We conclude this chapter by highlighting that we also evaluated the performance of the
proposed algorithms in dynamic TVWS scenarios, in which TVBDs are mobile, and through
the determination of the Price of Anarchy (PoA)3 [61], in order to assess the Nash equilibria
quality. For the sake of brevity, these results are not reported in this chapter, and we invite
the reader to refer to our work [22] for all the details regarding these results.

3The PoA is defined in our context as the ratio between the utility of the socially optimal solution and that of
the worst Nash equilibrium.



Chapter 4

Optimal Resource Allocation in
Virtual Networks and Cloud
Computing

Traditional telecommunication infrastructures are composed of property hardware operated
by a single entity to offer communication services to their final users. While this architec-
ture simplifies the design and optimization of the network equipment for specific tasks, its
low flexibility represents the main limitation for the evolution of the network infrastructure.
For this reason, network operators and equipment manufacturers have started the standard-
ization process of several virtualization solutions that have been developed in recent years
for enabling the sharing of general-purpose resources and increasing the flexibility of their
network architectures. Such a process has led to the specification of the Network Functions
Virtualization (NFV) technology [24], which promises to bring about several benefits, such as
reduced CAPEX and OPEX (CAPital and OPerational EXpenditure), low time-to-market for
new network services, higher flexibility to scale up and down the services according to users’
demand, simple and cheap testing of new services. Furthermore, Virtualization techniques
allow to setup cost-effective Data Centers (DCs) infrastructures for storing large volumes of
data and hosting large-scale service applications [26]. Large companies like Google, Face-
book, and Amazon have made large investment in massive virtualized data centers support-
ing Cloud services that require large-scale computations and storage. With the emergence
of Cloud Computing (CloudNaaS, EC2, SS3, etc.), service hosting in DCs has become a
profitable business that plays a crucial role in the future of Internet. The resource allocation
optimization problem is a key, challenging issue in both virtual networks and Cloud com-
puting, and the main goal of the Virtual Operator (VO) on one hand, and the Cloud Provider
(CP) on the other hand is to allocate resources in an efficient way in order to satisfy end-users’
demands while maximizing its own profit.

This problem is described in the following sections (Section 4.1 for Virtual Networks
and Section 4.2 for Cloud Computing), dedicating more space for this latter since it was

31
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Figure 4.1: Example Network Scenario: A single physical infrastructure (bottom figure) is shared among two
Virtual Operators. The network topology, the transmission services of network links, and the services executed
by network nodes are selected according to the virtual operator needs in order to minimize the physical network
congestion.

investigated by a Ph.D. student I co-supervised, Dr. Javier Salazar, under an international
collaboration project with University of Ottawa (Prof. Ahmed Karmouch and Dr. Abdallah
Jarray).

4.1 Congestion mitigation in Virtual (NFV-based) networks

The necessity to reduce CAPEX/OPEX for telecommunication operators is becoming a very
challenging issue to design Next Generation Internet Architectures. The NFV technology
has emerged as a means to address such issue allowing different (virtual or service) opera-
tors to share a single physical network infrastructure, as illustrated in the example network
scenario of Figure 4.1. Indeed, the flexibility provided by NFV permits to compose com-
munication services independently of the underlying equipment and quickly reconfigure the
infrastructure. However, the utilization of the same resources can increase their congestion
due to the spatio-temporal correlation of traffic demands and computational loads. Therefore,
in [27, 28], we analyzed the congestion resulting from the sharing of the physical infras-
tructure and proposed innovative orchestration mechanisms based on both centralized and
distributed approaches, aimed at unleashing the potential of the NFV technology.

In particular, we have first formulated the network functions composition problem as a
non-linear optimization model to accurately capture the congestion of physical resources and
to dynamically control traffic flows and system configurations in order to prevent the conges-
tion of network resources. While centralized solutions, like [27], permit to optimally control
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the system, the associated costs and responsibilities for satisfying the service (i.e., SLA and
corresponding penalties) represent one of the main obstacles for the operator of the phys-
ical infrastructure. Therefore, the NFV technology further calls for distributed approaches
where the best operational point of the system results from individual decisions performed
independently by virtual operators according to the network status and customers’ requests.
In this context, game theory provides the natural framework for both analyzing the evolu-
tion of NFV-based systems and designing the rules (e.g., incentives/prices and use policy) to
coordinate network allocation decisions of virtual operators.

As a second key contribution of [28], we analyze the congestion resulting from the shar-
ing of the physical infrastructure from a distributed (game theoretic) point of view. We formu-
late the distributed congestion minimization problem as a game, proposing a dynamic pricing
strategy of network resources, proving that the resulting system achieves a stable equilibrium
in a completely distributed fashion, even when all virtual operators independently select their
best network configuration. We demonstrate that the NFV congestion mitigation game ad-
mits a unique Nash Equilibrium, under very general conditions, and that efficient solutions
can be easily computed in a distributed fashion. We further compare our distributed solution
to a centralized approach, using both an optimization model and an efficient heuristic based
on the Shortest Path Tree algorithm. Numerical results showed that the proposed distributed
model significantly decreases network congestion, thus representing a very promising ap-
proach for operators to manage network resources in an efficient, fully distributed and dy-
namic fashion. Furthermore, it well approaches the performance of centralized optimization
models, which can hardly be solved to the optimum in real network scenarios.

4.2 Resource Allocation Optimization of Infrastructure As A Ser-
vice in Cloud Computing

Advances in communications and IT technology have profoundly influenced many aspects
of our life, making available an extensive range of new applications which undoubtedly have
had a great impact on society’s lifestyle. New technologies, such as virtualization, remote
storage or virtual private networks, enable users to access their data, content (streaming/video
on demand services) or even their work terminals from anywhere, at any time. It is in this
context that Cloud Computing facilitates the transition from a stationary IT model, where
information is locally processed and stored in a physical device to a distributed model that
promotes the use of remote resources in an abstract environment. Essentially, this architecture
gives end users the impression of having unlimited resources available in the cloud. As this
is what makes cloud computing attractive to end users, it is imperative that providers adopt
models that optimize the management of their resources to satisfy all user requests (hence
maintaining this perception of the end user), while maximizing their revenue.

The first contribution of this work was the identification of a novel architecture to im-
prove performance and maximize the revenue of the Cloud Provider (CP) in a general cloud
computing context. In this respect, our approach incorporates the cutting edge solutions pro-
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Figure 4.2: Networked Edge Datacenters Architecture.

posed in the literature – a distributed Data Center scenario where end users are able to access
the same CP’s infrastructure from different locations, and networked Edge DC architecture
–in a single model (An example is illustrated in Figure 4.2).

We focused on Infrastructure as a Service (IaaS) resources, which constitute the physical
infrastructure of the Cloud and which are contained in Data Centers (DCs). An IaaS request
is defined through two main requirements: Hosting and Networking resources (i.e., comput-
ing, storage, memory and bandwidth resources). When an IaaS request arrives, the CP has to
determine whether to accept or reject it, and the main guideline of his decision will be based
on both the availability of Networked Edge DCs resources and the economic benefit (cost)
of accepting an IaaS request. We start with studying the resource allocation optimization
problem in the general IaaS context in [29, 30], with and without consideration of quality
of service, and then in the Multimedia Cloud-based IaaS context [31]. We propose differ-
ent resource allocation optimization models for both IaaS cloud computing scenarios. The
proposed models are based on a large-scale optimization technique known as Column Gen-
eration (CG), which allows large and complex mathematical problems to be solved within
acceptable computational times. We evaluated the performance of our models in the several
realistic network scenarios, comparing them to state-of-the-art algorithms (Greedy, Bin pack-
ing and Multi-Site). Simulation results demonstrated that the proposed CG-IaaS optimization
approach effectively reduces the costs of the resources used by the CP, while exhibiting low
blocking ratio of IaaS requests with respect to other algorithms. In sum, we can affirm that
our approach proved to be effective not only in reducing costs but also in jointly allocating
different types of resources while ensuring that part of the infrastructure is always available
to serve future requests.

In the rest of this chapter, we will present in a concise, yet clear, manner our CG-based
resource allocation approach for the classic IaaS Cloud computing scenario. We refer the
reader to our recent work [31] for the resource allocation optimization approach introduced
in the specific, yet more challenging, case of Multimedia Cloud-based IaaS. Hence, the rest
of this chapter (Section 4.2.1) is organized as follows: first, we will present the network
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model, then, we will describe the resource allocation approach, and finally, we will conclude
by illustrating and discussing some numerical results showing the good features and insights
behind our proposed optimization approach.

4.2.1 Column-generation-based IaaS resource allocation approach

Network model

We adopt a Networked Edge DCs infrastructure (illustrated in Figure 4.2), to handle IaaS
user requests. We represent the DC physical infrastructure by an undirected graph Gd =
(Sd, Hd, Ld), where Sd denotes the set of backbone switching nodes, Hd the set of DC
server locations (hosting nodes), and Ld the set of network links. Each physical link between
DC server locations l ∈ Ld has a bandwidth capacity bl. Each DC hosting node u ∈ Hd

offers a computing capacity pu. A Cloud IaaS request is denoted by a Virtual Network In,
where n ∈ N = {1, 2, . . . , N} and represented by a directed graph Gn = (An, Sn, En),
where An, Sn, and En denote, respectively, the set of virtual hosting nodes and switching
nodes, and the set of virtual networking links. The QoS requirements of virtual link e ∈ En,
belonging to QoS class j ∈ JB , are defined by the pair of parameters (bj , dj), where bj is
the required bandwidth and dj is the end-to-end delay of a routing path measured through
the number of switching nodes between the two end points of the routing path. Similarly, the
QoS requirements of virtual node a ∈ An, belonging to class j ∈ JU , are defined by the pair
(pj , tj), where pj is the required CPU for QoS class j and tj is the set of potential embedding
hosting locations that guarantees QoS requirements of class j.

The mapping of each IaaS user request is decomposed into the hosting and the network
mapping as follows:

• IaaS Hosting: virtual hosting nodes of IaaS request n (∀a ∈ An) are mapped to differ-
ent substrate hosting nodes u ∈ Hd by the mapping MN : An → Hd. Similarly, virtual
switching nodes (∀s ∈ Sn) of request n are mapped to different substrate switching
nodes v ∈ Sd by mapping MN : Sn → Sd.

• IaaS Inter-Edge DCs Networking: each virtual link e ∈ En from request n is mapped
to a set of substrate paths πeuv ⊂ Πs by mapping ML: En → Πs, where (u, v) are
substrate nodes assigned to virtual nodes (s, d) source and destination nodes of virtual
link e, respectively.

Cloud Provider (CP)’s objective function

When an IaaS request arrives, the CP decides whether to accept or reject it. This decision
depends on three important aspects: the IaaS’s QoS requirements, the availability of cloud
DCs resources and the economic cost due to accepting the IaaS request.
In this work, we focus on computing and bandwidth as the main substrate resources, and
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therefore we propose to calculate the mapping cost of each IaaS request In,∀n ∈ N , repre-
sented by Gn = (An, Sn, En), as follows:

COST [In] = COST [MN (An),MN (Sn),ML(En)] (4.1)

Column Generation Formulation for IaaS Resource Allocation (CG-IaaS)

Since the IaaS mapping problem is known to be NP-hard and the Column Generation (CG) [62]
represents a good candidate solution for reducing the problem complexity and the execution
time to obtain the solution, we decide in this work to use such a technique to solve our
problem.

The proposed CG-QoS-IaaS optimization model formulates the IaaS mapping problem in
terms of Independent Cloud Mapping Configurations (ICMCs), where each ICMC provides
an IaaS mapping solution of a set of (one or more) IaaS requests. We denote by C the set
of all possible ICMCs. An ICMC configuration c,∀c ∈ C is defined by the vector (acn)n∈N ,
such that: acn = 1 if ICMC c serves IaaS request In and 0 otherwise. Accordingly, our prob-
lem can be formulated with respect to the variables λc, ∀c ∈ C, where λc is equal to 1 if a
configuration c is used for serving a IaaS request and 0 otherwise. Thus, our model consists
in selecting at maximum N ICMCs, if each IaaS request is served by a distinguished ICMC.

Therefore, the original IaaS mapping problem is decomposed into two subproblems:

• the Master problem:
It takes into account the constraints related to the optimal partitioning of available
substrate resources among QoS classes. By using the CG technique, we only solve a
restricted form of this problem, i.e., with a restricted number of columns (ICMCs1).
The objective function of the master problem that we want to minimize is given as:∑

n∈N
COST [In] =

∑
c∈C

COSTcλc +
∑
l∈Ld

∑
j∈JB

clb
j
l +

∑
u∈Hd

∑
j∈JU

cup
j
u, (4.2)

where COSTc, the cost of configuration c, corresponds to the costs of the used sub-
strate resources (bandwidth and computing) for the mapping of IaaS request granted
by ICMC c. It is defined as follows:

COSTc =
∑
l∈Lc

clbc(l) +
∑
u∈Hc

cupc(u), (4.3)

where bc(l) and pc(u) are the used substrate bandwidth and computing resources by
ICMC c, respectively. Lc ⊂ Ld and Hc ⊂ Hd define, respectively, the set of physical
links and hosting nodes used by ICMC c.
The variable bjl (∈ N,≤ bmax) defines the amount of bandwidth to be setup on link l for

1Each ICMC provides an IaaS mapping solution of a set of IaaS requests.
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QoS class j ∈ JB and the variable pju(∈ N,≤ pmax) defines the amount of computing
capacity to be setup on hosting node u for QoS class j ∈ JU .

• The pricing problem:
It corresponds to the problem of generating an additional column to the constraint
matrix of the restricted master problem, i.e., it generates an ICMC that improves the
current value of the objective function (an ICMC with negative reduced cost). It in-
cludes the following constraints which are related to the mapping of IaaS requests
respecting QoS requirements:

– Mapping of hosting nodes and switching nodes of IaaS requests:

∗ Mapping is done for all nodes of an accepted request In
∗ A virtual hosting node a of an IaaS request In can be assigned to only one

physical hosting node u.
∗ A virtual switching node s of In can be assigned to only one physical switch-

ing node v.

– Mapping of networking links of IaaS requests: at least one mapping path π is se-
lected between a pair of substrate nodes (u, v) assigned to end virtual nodes (s, d)
of virtual link e ∈ En.

The reduced cost of ICMC c is expressed as a function of the cost COSTc and the
variables of the pricing problem and the coefficients of the master problem.

For a detailed description of the formulations of the master and pricing problem we refer
the reader to our works [29, 30].

Recall that the main objective of the CG-QoS-IaaS model is to determine the optimal
QoS-based partitioning of networked edge data centers’ resources among QoS IaaS demand
classes. Let MIP(M) denotes the continuous relaxation of the original master problem, ob-
tained by relaxing the integrality constraints on variables λc; λc ∈ R+,∀c ∈ C. Moreover,
let LP(M) denotes the continuous relaxation of MIP(M); LP(M) is obtained by relaxing the
integrality constraints on variables bjl and pju. Since the number of ICMC configurations is
important, LP(M) is initialized by a subset of possible artificial configurations. Then, the
restricted master problem is solved until optimality. To check the optimality of the obtained
solution within the original problem, it is required to check the existence of a variable λc
with a negative reduced cost. If such a variable exists, it is added to the master problem and
this latter is solved again. Otherwise, LP(M) is solved to optimality.

Hence, to solve the MIP(M) problem, we use a CG-based QoS-IaaS mapping algorithm,
which proceeds as follows:

1. Relax the integrality of Data Center design variables as follows: bjl ∈ R, l ∈ Ld, j ∈
JB and pju ∈ R, u ∈ Hd, j ∈ JU .

2. Call procedure Column Generation() to solve the resulting LP(M) to optimality,
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3. Convert the design variables from continuous to integer values (bjl and pju ∈ N), while
keeping the variables λc continuous. The obtained mixed ILP program is MIP(M).

4. Use the MILP CPLEX solver to solve the resulting MIP(M) program.

5. To calculate an integer solution, re-establish integrality constraint on variable λc and
proceed with a branch-and-bound procedure using CPLEX package on selected columns
in MIP(M) solution.

Procedure Column Generation:

1. Solve the LP(M) master problem using CPLEX algorithm.

2. Solve the pricing problem.

3. Add the resulting column to the current master problem, and re-iterate with Steps 1
and 2 until no column can be found with a negative reduced cost. In such a case the
master problem is solved to optimality.

In the next section, we present some numerical results that show the efficiency of the
proposed CG-based QoS IaaS resource allocation approach, compared to literature; the Bin
packing [63] (BIN-QoS-IaaS), where computing and bandwidth requirements are mapped
using a CPU Bin and bandwidth Bin, respectively, and the Greedy computing node mapping
combined with a K-shortest path algorithm (G-QoS-IaaS) [64].

Numerical results

We consider a physical infrastructure of four edge data centers connected through the NSFNet
topology [65]. The backbone network includes 14 nodes located at different cities in the
United States. In each IaaS request, the number of virtual nodes is generated randomly
according to a uniform distribution in the range [2,20]. The minimum connectivity degree
is fixed to 2 links. QoS requirements of new IaaS requests are randomly generated from a
uniform distribution among |JB| = 5 QoS classes for IaaS nodes and among |JU | = 5 QoS
classes for IaaS links. Bandwidth and computing unit costs are expressed in terms of $X ,
which represents the price of 1 Mb of bandwidth or 1 unit of computing capacity.

Figure 4.3(a) and Figure 4.3(b) plot, respectively, the cumulative IaaS mapping cost for
the cloud provider and the blocking ratio of IaaS requests versus the allocation time periods.
Furthermore, Figure 4.3(c) and Figure 4.3(d) show, respectively, the percentage of bandwidth
utilization and substrate nodal CPU utilization versus the allocation time periods. In these
figures, we compare the performance of our CG-QoS-IaaS model with the BIN-QoS-IaaS
and G-QoS-IaaS benchmark models.

The results show that G-QoS-IaaS model provides the lowest mapping cost (the highest
blocking ratio). It rejects 36% up to 59% of the requests; this includes the ones using QoS
classes that require larger amounts of resources and therefore are more expensive. On the
other hand, the Bin-IaaS approach accepts more requests but still present a high blocking
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ratio on some periods and also larger cumulative mapping cost. In this aspect, the proposed
CG-QoS-IaaS model maintains a uniform, low blocking ratio through all time periods, while
reducing effectively the mapping cost guaranteeing at the same time the satisfaction of re-
quests’ QoS requirements.

(a) IaaS mapping cost (b) IaaS blocking ratio

(c) Bandwidth usage (d) CPU usage

Figure 4.3: The IaaS mapping cost for the Cloud Provider, the blocking ratio of the IaaS
requests, the bandwidth and the CPU usage versus the allocation time periods.

Moreover, the CG-QoS-IaaS model provides the highest bandwidth utilization; indeed,
it provides on average an utilization of 78% of the networks’ bandwidth resources through
all the planning period of time, where Bin packing and Greedy mapping used an average
of 66% and 47%, respectively. This is due to the fact that our model maintains a higher
bandwidth utilization to deal with the entire users’ requests of different classes of QoS. The
contrary applies for the other two models, which showed a high rejection rate. Finally, it
can be observed that the CG-QoS-IaaS model permits an average utilization of 38% of nodal
CPU resources, while the Bin Packing and Greedy mapping approaches use on average the
68% and 32%, respectively. This trend is tightly related to the fact that the Greedy and Bin
Packing approaches performed a sort of myopic mapping of hosting resources, with a lack of
coordination among the requirements in terms of bandwidth and CPU usage, thus exhibiting
a high blocking ratio.



Chapter 5

Summary of other works

In this chapter, I present a summary on a selection of additional research achievements I
obtained in the past ten years on distributed network design, optimal geographic content
caching in cellular networks and energy storage control in smart grids, which can be regarded
as extensions (and variants) of the works presented in the previous chapters.

• The work on distributed network design was developed during my regular stays (in the
period: 2008-2013) at the MAESTRO (now, NEO) team at INRIA Sophia Antipolis,
where I collaborated with Dr. Konstantin Avrachenkov and Dr. Giovanni Neglia.

• The two research activities on geographic content caching and energy storage control
were conducted with, respectively, Dr. Bartłomiej Błaszczyszyn and Dr. Ana Busic
and her Ph.D. student I co-supervised (Dr. M.U. Hashmi), during my 2-year “delega-
tion” in the DYOGENE team at INRIA Paris.

5.1 Network Design – A Game Theoretical Perspective

In many scenarios network design is not enforced by a central authority, but arises from the
interactions of several self-interested agents. This is the case of the Internet, where connectiv-
ity is due to Autonomous Systems’ choices, but also of overlay/virtual networks, where each
user client can decide the set of connections to establish. Therefore, in [66, 67], we studied
the network design problem from a game theoretic perspective and propose socially-aware
network design games (the social aspect means that users are in part social, and contribute all
together to minimize the network cost). Finally, we provided bounds on the Price of Anarchy
– which represents the loss of efficiency as the ratio between the cost of a specific stable
network and the cost of the optimal network – and other efficiency measures, and evaluated
the performance of the proposed schemes in several network scenarios.

However, considering almost exclusively networks designed by selfish users can result
in/lead to consistently suboptimal solutions. Therefore, in [68, 69], we addressed the network
design issue using cooperative game theory, and we extended the Nash bargaining solution
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(NBS) approach to the case of multiple players and give an explicit expression for users’ cost
allocations. We further provided a distributed algorithm for computing the Nash bargaining
solution. Then, we compared the NBS to the Shapley value and the Nash equilibrium solu-
tion in several network scenarios, including real ISP topologies, showing its advantages and
appealing properties in terms of cost allocation to users and computation time to obtain the
solution.

5.2 Optimal Geographic Caching in Cellular Networks with Lin-
ear Content Coding

We stated and solved in [70]1 the problem of optimal geographic caching of content in cellu-
lar networks, where linear combinations of contents are stored in the caches of base stations.
We considered a general content popularity distribution and a general distribution of the
number of stations covering the typical location in the network. We looked for a policy of
content caching maximizing the probability of serving the typical content request from the
caches of covering stations. The problem has a special form of monotone sub-modular set
function maximization. Using dynamic programming, we found a deterministic policy solv-
ing the problem. We also considered two natural greedy caching policies. We evaluated our
policies considering two popular stochastic geometric coverage models: the Boolean and the
Signal-to-Interference-and-Noise-Ratio models, assuming Zipf popularity distribution. Our
numerical results show that the proposed deterministic policies are in general better than ran-
domized policies considered in the literature, and can further improve the total hit probability
in the moderately high coverage regime.

5.3 Optimal Control of Storage under Time Varying Electricity
Prices

End users equipped with storage may exploit time variations in electricity prices to earn
profit by doing energy arbitrage, i.e., buying energy when it is cheap and selling it when it
is expensive. We proposed in [71]2 an algorithm to find an optimal solution of the energy
arbitrage problem under given time varying electricity prices. Our algorithm is based on the
discretization of optimal Lagrange multipliers of a convex problem and has a structure in
which the optimal control decisions are independent of past or future prices beyond a certain
time horizon. The proposed algorithm has a run time complexity ofO(N2) in the worst case,
where N denotes the time horizon. To show the effectiveness of the proposed algorithm,
we compare its runtime performance with other algorithms used in MATLAB’s constrained
optimization solvers. Our algorithm is found to be at least ten times faster, and hence has the

1This work was conducted with Dr. Bartomiej Baszczyszyn from Inria and Ecole Normale Supérieure, Paris,
France.

2This work was conducted with Dr. Ana Busic from Inria and Ecole Normale Supérieure.
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potential to be used in real-time scenarios. Using the proposed algorithm, we also evaluated
the benefits of performing energy arbitrage over an extended period of time for which price
signals are available from some ISO’s in USA and Europe.



Chapter 6

Conclusion and Future Perspectives

This last chapter presents the conclusions of this manuscript, and then outlines the perspec-
tives I deem more promising, which constitute my research project for the next five years.

6.1 Conclusion

This manuscript presented the main research activities I carried out in the past ten years; it
is structured into three main chapters (Chapter 2–Chapter 4), corresponding to three major
research areas: (1) Wireless Body Area Networks, (2) Cognitive Radio Networks, and (3)
Virtual Networks and Cloud Computing.

In Chapter 2, we investigated several optimization problems related to planning op-
timal, energy-efficient and cost-effective Wireless Body Area Networks (WBANs), reliable
data delivery and routing in WBANs, and cross-technology interference mitigation in Body-
to-Body Networks. In particular, we introduced centralized optimization frameworks to ad-
dress each of these problems, using (mixed) integer linear programming. Since solving the
cross-technology interference mitigation problem may take a long computation time (several
hours) to obtain the optimal solution in large BBN network instances, we further developed a
set of efficient heuristics that build upon the sequential fixing technique, randomized round-
ing, and tabu search. Furthermore, we proposed a distributed, game theoretic approach for
this latter problem, where each WBAN, which plays the role of a player in the interference
mitigation game, aims at maximizing its own signal-to-interference ratio by selecting the best
available channels (the best strategies) in the ISM band shared among all WBANs.

Chapter 3 focuses on the problem of opportunistic and dynamic spectrum access in Cog-
nitive Radio (CR) and TV White Space (TVWS) systems. Since CR nodes and TVWS devices
are geographically distributed and aim at maximizing their own utility in a selfish manner,
a game theoretic approach constitutes a good candidate solution to address the distributed
spectrum access problem in these networks. In this context, we first formulated and studied
a spectrum access game, where players (CR nodes) choose the channels that maximize their
utility. Then, we proposed a Stackelberg (leader-follower) game for modeling and solving
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the joint pricing and network selection problem in CRNs. In this problem, the leaders are
the primary and secondary operators that set the prices for accessing their network, while the
followers are the CRs that select the primary or the secondary network according to the cost
function that they want to minimize. Finally, we introduced two types of TVWS spectrum
management games, where the goal is to allocate the available TV channels to TVWS devices
ensuring low interference among them.

Chapter 4 studies the resource allocation problem in two environments which are tightly
related: NFV (Network Function Virtualization)-based Networks and Cloud Computing. We
first proposed an optimization framework for congestion mitigation in NFV-based networks,
using mathematical programming tools. The goal of the operator of the physical infrastruc-
ture is to minimize the total congestion and the worst (per link) congestion in the network.
Then, we dealt with the congestion mitigation from a distributed point of view; each virtual
operator aims at performing routing, while guaranteeing that its flow passes through a pre-
defined set of nodes with required network functions. Finally, we focused on the resource
allocation problem for Infrastructure as a Service (IaaS) in Cloud computing. We proposed
an optimization approach for IaaS resource allocation, taking into account users’ QoS re-
quirements. This approach leverages the Column Generation technique, which allows us to
drastically reduce the problem complexity.

Additional work was conducted in parallel, and was briefly presented in Chapter 5. This
work is articulated around distributed network design, optimal geographic caching in cellular
networks and optimal storage control in smart grids.

6.2 Future Perspectives – Research Project

In the continuity of the research activities I presented in this manuscript, I think that a promis-
ing research topic that deserves to be investigated is the resource allocation problem in next
generation networks, which include the Internet of Things (IoT), as well as the access and
the Core of mobile networks that leverage network function virtualization techniques. Hence,
my research project for the next five years will be articulated around three main activities:

• joint routing and interference mitigation in next-generation networking scenarios;

• optimal resource allocation in (Cloud-based) radio access networks;

• optimal planning of next-generation mobile networks.

Context and position

Recent advances in networking, communications, computation, software, and hardware tech-
nologies have revolutionized the way Humans, Smart Things, and Engineered Systems inter-
act and exchange information. The Internet of Things paradigm [72, 73, 74], which is one
of the major contributors to this area, will fuel the realization of this new, globally intercon-
nected world. Therefore, today’s networks are becoming highly heterogeneous and need to
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interact with different recently emerging infrastructures, such as Internet of Things, Cloud
Computing data centers and Mobile Edge computing facilities in order to provide users with
seamless mobility, ubiquitous connectivity and remote data access. This phenomenon has
further increased such networks complexity and incited infrastructure and service providers
to implement novel mechanisms for efficiently managing, optimizing and orchestrating their
physical/virtual resources in a flexible manner. It is in this context that Virtualization has
attracted the attention of the research community and Industry.

Research goals: The main objective of my research project is to design and develop a
novel and efficient resource optimization framework tailored for current and future networks,
which build upon virtualization techniques (both at the access and at the core of the network)
in order to reduce the operational and capital costs of the operators. More specifically, I will
start by designing centralized resource optimization approaches using the most suitable tools
from mathematical programming, auction theory and cooperative game theory. However, in
large scale networks, which can be owned and operated by different parties, a distributed
approach is more suitable, and hence in this case, I will design distributed approaches using
concepts from non-cooperative game theory or adaptive local/distributed learning.

My research project will be logically structured into 3 interrelated activities. The first
activity focuses on IoT, and more specifically on Body-to-Body area networks that provide
healthcare applications and need to exchange information both inside the network as well as
outside, for processing purposes, for example. In order to achieve fast communications and
data exchange, necessary to such IoT networks, an efficient mobile infrastructure that can be
dimensioned dynamically, and on-the-fly, is hence necessary; designing and carefully plan-
ning it, leveraging the concept of virtualization both at the access (Cloud-RAN concept) and
in the core (Evolved Packet Core), is the focus of Activities 2 and 3, respectively. Indeed,
these activities are tightly coupled since integrating flexible network optimization both in the
access and core part of mobile networks is vital to provide all the necessary chain of services
needed to serve the traffic offered to the network.

A reference networking scenario: An example is illustrated in Figure 6.1, where at the
center we have a Body-to-Body (or Human-to-Human) Network (BBN). A BBN can be seen
as a group of humans, equipped with wearable sensors/devices and smartphones, who desire
to interact with each other and their surrounding environment, and want to exchange data
in real-time. For example, wearable sensors can measure the physiological signals or the
activity of the user and send such data to her/his smartphone for visualization or processing,
or for forwarding to the Cloud when deep learning/decision making or intensive processing
are necessary. Furthermore, sensors deployed in the environment (i.e., a smart home, a smart
city ...) can collect data (i.e., traffic information) and send it to the user’s smartphone, using
wireless communication (WiFi, Bluetooth or ZigBee technology) or potentially through the
Internet, and then the smartphone can be used to share such data in real-time with other users
within the same BBN (in the same geographical area).
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Figure 6.1: An example of a networking scenario, which includes IoT, Cloud-Radio Access Networks (C-
RAN) and Mobile Edge Computing technologies.

Data processing in the Cloud and data exchange in real-time among BBN mobile users
represent two challenging tasks for mobile operators, which need to upgrade their infrastruc-
ture in order to deliver on-the-fly high bandwidth, with low latency. It is in this context that
virtualization has gained momentum in mobile networks infrastructure, and virtualization
techniques have been deployed at the access network with the emergence of Cloud-Radio
Access Networks (C-RAN) [75, 76], and at the core of the mobile network with vEPC (Vir-
tual Evolved Packet Core) [77, 78, 79]. Virtualization indeed allows mobile operators to
dimension and orchestrate the mobile infrastructure resources on-the-fly in a flexible man-
ner, and guarantee a low OPEX and CAPEX costs for the operator and end-to-end QoS for
end-users. For this reason, in Figure 6.1 we show a BBN that needs to interact with sensors
in its surrounding environment (smart cities) and at the same time with the Cloud-RAN and
Mobile Edge computing facilities. The vEPC is in the backhaul of the mobile operator in-
frastructure and hence it is not shown on the figure.

Open questions: In this networking scenario, several challenging questions arise at dif-
ferent levels, and some of these questions, especially those situated at my expertise level (i.e.,
networking and physical levels, as well as network planning and resource optimization), will
be tackled and solved within my research project:

1. How to perform optimal data delivery/data routing taking into account the interference
mitigation issue [12, 14, 15] in a highly dynamic scenario (in a BBN), where people
can join and leave the network randomly? Which solutions could be devised? The
routing strategy depends on the situation: 1) We may need to route data end-to-end,
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via the access radio network and then through the mobile core network or 2) we may
use another communication technology (i.e., in hotspots), and forward data from one
BBN user to another until data reaches the destination, like some routing protocols do
in mobile Ad Hoc networks.

2. What kind of challenges will be faced by augmenting the BBN scenario with smart
environment services, a Cloud RAN and Cloud computing facilities at the mobile edge
network? How to efficiently and dynamically allocate resources at the access/edge and
core parts of the mobile network?

The central goal of my research project is to answer the above questions by designing
and developing an efficient optimization framework tailored for such challenging networking
scenarios. To deal with uncertainty and dynamicity, which are intrinsic to these latter, I plan
to use (Stochastic) Mathematical Programming tools. Furthermore, to address large-scale
and distributed scenario cases, Game Theory and Learning algorithms will be used to help
devices learn, self-adapt and self-organize in order to perform efficiently data routing and
interference mitigation between each other.

The main objectives of my research project as well as the strategic and technological
ideas to concretely address each of them are detailed hereafter.

6.2.1 Joint routing and interference mitigation in the future/next-generation
networking scenarios

This research activity is structured into the following three sub-activities:

(1A) Joint routing and interference mitigation in Body-to-Body networks

The main goal of this first activity is to develop and integrate an interference mitigation
model along with a routing mechanism into a cross-layer optimization approach for the intra-
BBN communication scenario, building upon and extending our previous works [12, 14, 15].
Since sensors and wireless/wearable devices should, on one hand, exhibit low-power oper-
ations and, on the other hand, share the same wireless medium, in this research activity I
will first define novel and efficient routing metrics that take into account the wireless devices
activities at the PHY-MAC layers, and then optimize the wireless communication link selec-
tion/scheduling by using mathematical tools from Integer Programming and Game Theory,
thus guaranteeing low interference between devices.

(1B) BBN Cloudification in a Smart environment

The goal of this activity is to extend the basic scenario of BBN to a more general one, which
includes cloud computing facilities (storage, computing, processing ...), due to the emergence
of Edge mobile computing and Cloud-RAN, and interaction, through wireless communica-
tions links, with the surrounding environment of a smart city with smart sensors/actuators,
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smart buildings, smart transportation systems that could provide user-profile-based services.
This activity is the basis for Activity 1C, and will describe, define and model from a tech-
nical and strategical point of view the different relationships and interactions between the
different actors (wearable and wireless devices, the Edge Cloud, Smartphones accessing the
Cloud-RAN) involved in the networking scenario shown in Figure 6.1.

(1C) Optimal resource allocation and management in the global network scenario

This activity is central for the project and poses interdisciplinary challenges related to the
coexistence of different key technologies, involved in the considered network scenario of
Figure 6.1, which are:

1. WiFi/ZigBee/Bluetooth wireless technologies used by RFID sensors, wearable de-
vices, smartphones radio interfaces, WiFi access points in hotspots (i.e., airports, rail-
way stations);

2. the Cloud computing technology offering to BBN users ubiquitous data access with
low latency and computing services [25, 80].

In addition to the technology coexistence issues, I plan to consider the mobility of users who
ask for ubiquitous services, and anywhere/anytime connectivity despite the fact that they are
mobile.

To realize the goals of this activity, I will first extend the solutions developed in Activ-
ity (1A) to the more general networking scenario involving the mobile and cloud environ-
ments. Adopting a centralized approach may have critical limitations in terms of overhead
and computation time, and therefore as an alternative, a distributed approach will be carefully
designed and developed in this general context, providing us a good tradeoff between com-
plexity/overhead and optimality/quality of the solutions. A natural, final step of Activity 1
will be dedicated to implementation and validation in order to provide useful proposals for
the research community and industry. This step is discussed in more details in the Method-
ology section (Section 6.2.4).

6.2.2 Resource Allocation Optimization in Cloud-based Radio Access Networks
(C-RAN)

C-RAN, sometimes referred to as Centralized-RAN or Virtualized-RAN, is a novel mobile
network architecture which aims at addressing a number of challenges mobile operators are
facing today, when trying to support ever growing end-users’ needs [75, 76]. These include
support to Machine-to-Machine (M2M) communications, which are growing considerably in
terms of traffic volume due to the success of sensors and their applications. End users have
thus stringent constraints related to end-to-end QoS guarantees, real-time data exchange,
storage and computing/processing services.
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The main idea behind C-RAN is to pool the Baseband Units (BBUs) from multiple base
stations into a centralized BBU Pool for statistical multiplexing gain, while shifting the bur-
den to the high-speed wireline transmission of In-phase and Quadrature (IQ) data. C-RAN
enables energy efficient network operation, cost savings on baseband resources and improve-
ment of the network capacity by performing load balancing and cooperative processing of
signals originating from several base stations [75]. Figure 6.2 illustrates an example scenario
of a C-RAN, where we have a set of users asking for blocks of resources to the Mobile Vir-
tual Network Operators (MVNOs), which in turn, based on users’ requests, ask for resources
to the Cloud operator. Therefore, in this research activity, I will focus on the following opti-
mization problems for the C-RAN context:

Figure 6.2: An example of a C-RAN, which includes a set of mobile users, several Mobile Virtual Network
Operators (MVNOs) and a Cloud operator.

Auction-based Resource Allocation

In general, the C-RAN scenario, as illustrated in Figure 6.2, consists of three main actors:
the mobile users, the Mobile Virtual Network Operators (MVNOs) and the Cloud Operator
(CO) who owns the physical resources. Mobile users can ask the MVNOs for various types
of resources (radio, processing or computation resources) and MVNOs in turn, based on the
underlying users’ requests, ask the CO for the needed resources. It is easy to see that the re-
source allocation approach can be decomposed into two-levels: low-level – between mobile
users and MVNOs – and high-level – between MVNOs and the CO. Given the hierarchical
structure of the considered networking scenario, Auction Theory [81, 82] represents a very
good mathematical tool to model and solve the low-level and the high-level resource alloca-
tion problem. In fact, auctions are economically well-adapted in markets where sellers (or
auctioneers) want to maximize their revenues and technically, can significantly increase the
efficiency of the resource utilization. We can easily imagine that a low-level auction takes
place between users and MVNOs and a high-level auction between MVNOs and the CO.
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In the considered scenario, each mobile user will submit her/his bid to one or more
MVNOs, and the bid contains for instance the number of blocks of spectrum, the amount
of storage, a time interval for computation (i.e., starting and ending time), and at last the
price the user is willing to pay. Each MVNO in turn bids the total amounts of resources it
needs, based on users’ demands, and the price it is willing to pay to the C-RAN operator.
The MVNO and the C-RAN operator naturally aim at maximizing their revenues.

It is worth noting that the consideration of various types of resources (more than one pool
of resources at the CO) can significantly complicate the problem. Therefore, as a starting
point, I will study, model and solve a special case considering only one type of resources
(i.e., the number of spectrum blocks) requested by users. Then, an extension, with at least two
different types of resources, will be investigated. Finally, this research activity will include
a theoretical study to demonstrate that the auction mechanisms satisfy a set of desirable
economical properties: individual rationality, efficiency, incentive compatibility, and budget
balance.

Optimal Resource Matching

Reconsidering the networking scenario in Figure 6.2, the wireless resource management
problem can be alternatively posed as a matching problem between resources and users at
the low and high levels. According to the survey in [83], entitled Matching Theory for
Future Wireless Networks: Fundamentals and Applications, the resources can be of dif-
ferent abstraction levels, representing base stations, time-frequency chunks, power, or oth-
ers. Users can be devices, stations or smartphone applications. Each user and resource has
a quota that defines the maximum number of players with which it can be matched. The
main goal of matching is to optimally match resources and users, given their individual, of-
ten different objectives and learned information. Matching theory has been considered in
different wireless network contexts – cognitive radio networks [84], heterogeneous small
cell-based networks [85, 86] and Device-to-Device communications [87], and the obtained
results confirm that it is indeed an effective method to address challenging wireless resource
allocation/management problems. Therefore, in this research activity, I plan to use match-
ing theory to model and solve the resource allocation problem between users and MVNOs
in the low-level and between MVNOs and the CO in the higher one. Using such method
in the C-RAN context is indeed exciting and could provide efficient solutions; however, it
is worth noting that I expect that a resource allocation approach based on matching theory
could be complex, and approximation algorithms will hence be developed, giving us a good
compromise between optimality (performance) and complexity.

Radio Resource Calendaring

Bandwidth calendaring (termed as calendering for brevity) refers to the possibility of shifting
some bulk data transfers, typically of large size with less stringent real-time constraints, to
be scheduled on future occasions, when the network is less congested [88, 89]. One such
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example is an update for a popular application which could be pushed towards user devices
at night. It exploits the knowledge, or estimation, of future arrivals to pack current and future
demands in an optimal way in the network.

Calendaring gained momentum in transferring large, inter-datacenter traffic through Wide-
Area Networks (WAN) which constitute expensive and business-critical resources [90, 91].
It has been made possible thanks to Software-Defined Networking (SDN), which allows for
logically centralized control of resources [92].

The main idea behind resource calendaring is to (re-)schedule some flexible connections
(those without hard or real-time constraints) later in time thus utilizing more efficiently the
available bandwidth and reducing both the call blocking rate and interference. For this rea-
son, in this activity, I will study the calendaring problem in the C-RAN context, which, as
a centrally controlled entity, is a natural candidate for applying such a technique. I plan
to consider two broad categories of user flows: shiftable and non-shiftable, but at the same
time I will model the whole range between these two extreme users’ preferences in terms of
the experienced delay before being served. To this aim, the first step will be to formulate
the problem through an Integer Linear Program (ILP), to perform the optimal calendaring
of users’ connections while maximizing some pertinent metric like, for example, the social
welfare. The second step will be to propose heuristics approaches, starting from greedy al-
gorithms. A thorough simulation campaign will be needed to test our models and algorithms
in several case studies, varying several key system parameters to measure the effectiveness
of our proposed approach and models to improve the performance of C-RAN systems.

6.2.3 Optimal Planning of Next-generation Mobile Networks

As mentioned earlier in my research project, mobile traffic from smartphones and portable
devices, along with Device-to-Device (D2D) or M2M applications, are creating huge vol-
umes of mobile data traffic. The signaling overhead necessary for handling these diverse
applications, which is even more critical than the capacity needs, requires a radical trans-
formation of the actual mobile network architecture (i.e., the Evolved Packet Core of LTE
network). This has encouraged mobile operators to leverage virtualization techniques (i.e.,
Network Function Virtualization (NFV) and Software Defined Networking (SDN)) in their
network infrastructure, promoting the new paradigm of virtualized Evolved Packet Core
(vEPC) [77, 78, 79]. vEPC combines diverse packet core functions and provides those net-
work functions as virtualized services, in order to scale capacity on-the-fly and introduce
new services in a fast and cost-effective way according to mobile data traffic dynamics. For
example, M-CORD [93] is an open source reference solution for carriers deploying 5G mo-
bile wireless networks. This solution is built on SDN, NFV and cloud technologies, and
includes both virtualization of RAN functions and a vEPC to enable mobile edge applica-
tions and innovative services. Moreover, the Telecom Infra Project [94] includes a set of
groups, which were created to support three strategic network areas: Access, Backhaul and
Core Management.

A key feature of mobile core network function virtualization is its ability to provide intel-
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ligent resource management and network orchestration by dynamically scaling packet core
functions to adapt the system to actual needs, in a flexible way. Virtualization allows mobile
operators to get rid of building out a packet core infrastructure dimensioned for peak capac-
ity and to elastically create or take down resources on-the-fly. It also reduces both CAPEX
and OPEX, giving operators the possibility of replacing purpose-built hardware with stan-
dardized computing and storage platforms while, at the same time, helping the packet core
infrastructure run more efficiently, reducing the network footprint, and simplifying network
configuration and maintenance.

Deploying virtualization techniques in core mobile networks in order to increase network
flexibility and performance while reducing services deployment cost has been investigated by
few recent works [77, 78, 79]. Differently from these related works, this research activity will
provide a clear representation of the structure of the underlying computational infrastructure
as well as a detailed description and modeling of the interrelations between the different
elements (the mobile core functions) composing the EPC. These issues were completely or
in part ignored in the previous works.

More specifically, I will first propose novel optimization models for optimal planning of
vEPC that consider time-varying traffic patterns based on real traces. These models will op-
timize the placement of virtual network functions in data centers and their interconnections,
by satisfying a some order while interconnecting these functions. I will answer to questions
like: Where is it better to instantiate network functions? How to interconnect them? Further-
more, a set of constraints will be proposed in order to define the end-to-end delay, the DC
maximum capacity and processing delay.

This optimization problem is very challenging and complex. Therefore, my strategy will
be to focus on one or maximum two types of user applications as a starting point to model
and formulate the optimal vEPC planning problem. To obtain good solutions in a short
computation time, I will develop approximate algorithms which scale in a polynomial time
in case of large scenarios including a very large number of mobiles users. Then, the proposed
models and algorithms will be extended to scenarios with diverse types and a large number
of applications, along with the required network functionalities. Finally, the optimal vEPC
planning problem will be addressed and solved not only in its off-line version, but potentially
in the on-line context.

6.2.4 Methodology

To realize my aforementioned objectives, I plan to use the most adequate optimization and
mathematical tools, such as Mixed Integer Linear Programming, Stochastic Programming
and Game Theory, to model and formulate on one hand the joint routing and interference
mitigation problems of BBN-centric IoT scenarios and on the other hand, the resource op-
timization problems in the Cloud-RAN and the mobile core network. I will then perform
numerical analysis and simulations in order to study the sensitivity of the proposed models
and algorithms to the system parameters and evaluate them.

Methodologically, this project addresses a topic at the nexus of IoT, Sensor Networking,
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Virtualization and Cloud computing, by using mathematical tools in stochastic optimization,
game theory, distributed learning, algorithm design and analysis. Optimization techniques
(combinatory optimization) will be applied to solve the formulated optimization problems
and analyze the structural properties of the solutions and the correspondent tradeoffs. Ef-
ficient heuristics will be proposed to scale up to realistic network sizes, thus studying the
performance limit. Dynamical system analysis and distributed learning methods are further
employed in the investigation of the convergence and stability properties of the proposed dis-
tributed algorithms for online sensor network reconfiguration. Finally, game theory (along
with auction and matching theory) will play an essential role in the design of efficient and ro-
bust distributed algorithms and protocols, and their performance characterization and analy-
sis. I have already used these tools in some of my previous works like [12, 18, 20, 29, 31, 15]
with success, and I plan to further deepen into such fundamental knowledge to tackle the
challenges proposed in this project.

The mathematical framework developed for each of the objectives should be followed by
a practical design of protocols and implementation plans to ensure deploy ability and maxi-
mal diffusion in standards and real-life networks. For this reason, an additional, interesting
step will be to validate our solutions on experimentation platforms for IoT (to this aim, I plan
to use platforms like the FIT IoT-Lab - https://www.iot-lab.info/, which is a very large scale
open WSN testbed), and recently available platforms for 5G mobile networks based on NFV,
SDN and Cloud technologies [93, 94] (M-CORD and TIP Community Labs).

To the best of my knowledge, very few research projects convey a good tradeoff between
robust mathematical foundations, and experimentation/prototyping like this project does.
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[36] E. Reusens, W. Joseph, B. Latré, B. Braem, G. Vermeeren, E. Tanghe, L. Martens,
I. Moerman, and C. Blondia. Characterization of on-body communication channel and
energy efficient topology design for wireless body area networks. IEEE Transactions
on Information Technology in Biomedicine, 13(6):933–945, September 29, 2009.

[37] A. Ehyaie, M. Hashemi, and P. Khadivi. Using relay network to increase life time in
wireless body area sensor networks. In Proc. of the 10th IEEE WoWMoM, pages 1–6,
Kos, Greece, June, 2009.

[38] G. Fang, E. Dutkiewicz, K. Yu, R. Vesilo, and Y. Yu. Distributed inter-network inter-
ference coordination for wireless body area networks. In IEEE GLOBECOM’10, pages
1–6, Miami, Florida, USA, Dec. 2010.

[39] J. Dong and D. Smith. Joint relay selection and transmit power control for wireless
body area networks coexistence. In IEEE International Conference on Communications
(ICC), pages 5676–5681. IEEE, Sydney, Australia, June 2014.

[40] Vincent WS Wong et al. Joint optimal channel assignment and congestion control for
multi-channel wireless mesh networks. In Communications, 2006. ICC’06. IEEE Inter-
national Conference on, volume 5, pages 1984–1989. IEEE, 2006.

[41] A.H. Mohsenian Rad and V.W.S. Wong. Partially overlapped channel assignment for
multi-channel wireless mesh networks. In IEEE ICC’07, pages 3770–3775, Glasgow,
Scotland, June 2007.

[42] J. Huang, G. Xing, G. Zhou, and R. Zhou. Beyond co-existence: Exploiting wifi white
space for zigbee performance assurance. In 18th IEEE International Conference on
Network Protocols (ICNP’10), pages 305–314, Kyoto, Japan, 2010.

[43] S.Y. Shin, H.S. Park, S. Choi, and W.H. Kwon. Packet error rate analysis of zigbee un-
der wlan and bluetooth interferences. IEEE Transactions on Wireless Communications,
6(8):2825–2830, 2007.



REFERENCES 65

[44] C.-J.M. Liang, N.B. Priyantha, J. Liu, and A. Terzis. Surviving wi-fi interference in low
power zigbee networks. In Proceedings of the 8th ACM Conference on Embedded Net-
worked Sensor Systems (SenSys’10), pages 309–322, Zurich, Switzerland, November
2010.

[45] J. Hou, B. Chang, D.-K. Cho, and M. Gerla. Minimizing 802.11 interference on zig-
bee medical sensors. In Proceedings of the Fourth International Conference on Body
Area Networks (BodyNets’09), page 5. ICST (Institute for Computer Sciences, Social-
Informatics and Telecommunications Engineering), Brussels, Belgium, 2009.

[46] R. Rosini, R. D’Errico, and R. Verdone. Body-to-body communications: A
measurement-based channel model at 2.45 ghz. In IEEE PIMRC’12, pages 1763–1768,
Sydney, Australia, Sept. 2012.

[47] D. Monderer and L.S. Shapley. Potential games. Games and economic behavior, Else-
vier, 14(1):124–143, 1996.

[48] N. Nisan, T. Roughgarden, E. Tardos, and V. V Vazirani. Algorithmic game theory.
Cambridge University Press, 2007.

[49] David B Johnson and David A Maltz. Dynamic source routing in ad hoc wireless
networks. In Mobile computing, pages 153–181. Springer, 1996.

[50] Federal Communications Commission et al. Second memorandum opinion and order.
FCC 10-174, Washington, September 23, 2010.

[51] Federal Communications Commission et al. Third memorandum opinion and order.
FCC 12-36, 36, Washington, April 5, 2012.

[52] X. Chen and J. Huang. Game Theoretic Analysis of Distributed Spectrum Sharing
With Database. Proceedings of the IEEE 32nd International Conference on Distributed
Computing Systems (ICDCS), pages 255–264, Macau, China, June 18-21, 2012.

[53] X. Feng, Q. Zhang, and J. Zhang. A Hybrid Pricing Framework for TV White Space
Database. IEEE Trans. on Wireless Communications, 13(5):2626–2635, 2014.

[54] Y. Luo, L. Gao, and J. Huang. Price and Inventory Competition in Oligopoly TV White
Space Markets. IEEE Journal on Selected Areas in Communications, 33(5):1002–1013,
May 2015.

[55] R. Rajbanshi, Q. Chen, A.M. Wyglinski, G.J. Minden, and J.B. Evans. Quantitative
Comparison of Agile Modulation Techniques for Cognitive Radio Transceivers. Pro-
ceedings of the fourth IEEE Consumer Comm. and Networking Conf. Workshop Cogni-
tive Radio Networks, pages 1144–1148, January 2007.



REFERENCES 66

[56] H. Kim and K.G. Shin. Efficient Discovery of Spectrum Opportunities with MAC-
Layer Sensing in Cognitive Radio Networks. IEEE Transactions on Mobile Computing,
7(5):533–545, 2008.

[57] H. Bogucka, P. Kryszkiewicz, and A. Kliks. Dynamic Spectrum Aggregation for Future
5G Communications. IEEE Communications Magazine, 53(5):35–43, 2015.

[58] D. Niyato and E. Hossain. Competitive spectrum sharing in cognitive radio networks: a
dynamic game approach. IEEE Transactions on Wireless Communications, 7(7):2651–
2660, 2008.

[59] V. Berinde. Iterative Approximation of Fixed Points. 2nd Edition, Springer, 2007.

[60] L. Rose, E. V. Belmega, W. Saad, and M. Debbah. Pricing in Heterogeneous Wireless
Networks: Hierarchical Games and Dynamics. IEEE Transactions on Wireless Com-
munications, 13(9):4985–5001, 2014.

[61] E. Koutsoupias and C. H. Papadimitriou. Worst-Case Equilibria. Proceedings of the
16th Annual Symposium on Theoretical Aspects of Computer Science, pages 404–413,
Trier, Germany, March 4-6, 1999.

[62] M. E. Lübbecke and J. Desrosiers. Selected topics in column generation. Operations
Research, 53(6):1007–1023, 2005.

[63] L. Eyraud-Dubois and H. Larcheveque. Optimizing resource allocation while han-
dling sla violations in cloud computing platforms. In IEEE 27th International Sym-
posium on Parallel & Distributed Processing (IPDPS), pages 79–87. IEEE, Boston,
Massachusetts, USA, 2013.

[64] Y. Zhu and M.H. Ammar. Algorithms for assigning substrate network resources to
virtual network components. In IEEE INFOCOM, pages 1–12, Barcelona, Spain, April
2006.

[65] S. Peng, R. Nejabati, and D. Simeonidou. Role of optical network virtualization in cloud
computing. Journal of Optical Communications and Networking, 5(10):162–170, 2013.

[66] J. ELIAS, F. Martignon, K. Avrachenkov, and G. Neglia. Socially-Aware Network
Design Games. In Proceedings of the 29th IEEE Conference on Computer Communi-
cations (INFOCOM 2010), pages 1–9, Mars 2010, San Diego, CA, USA.

[67] J. ELIAS, F. Martignon, K. Avrachenkov, and G. Neglia. A Game Theoretic Analysis of
Network Design with Socially-Aware Users. Elsevier Computer Networks, 55(1):106–
118, Janvier 2011.

[68] K. Avrachenkov, J. ELIAS, F. Martignon, G. Neglia, and L. Petrosyan. Cooperative
Network Design: a Nash bargaining solution approach. Elsevier Computer Networks,
83:265–279, 4 June 2015.



REFERENCES 67

[69] K. Avrachenkov, J. ELIAS, F. Martignon, G. Neglia, and L. Petrosyan. A Nash bargain-
ing solution for Cooperative Network Formation Games. In Proceedings of Networking
2011, pages 1–9, Valencia, Spain, May 2011.

[70] J. ELIAS and B. Blaszczyszyn. Optimal geographic caching in cellular networks with
linear content coding. In Proceedings of the 15th International Symposium on Modeling
and Optimization in Mobile, Ad Hoc, and Wireless Networks (WiOpt 2017): The 2nd
Content Caching and Delivery in Wireless Networks Workshop (CCDWN), pages 1–6,
Paris, France, 15-19 May 2017.

[71] M.U. Hashmi, A. Mukhopadhyay, A. Busic, and J. ELIAS. Optimal control of storage
under time varying electricity prices. In Proceedings of IEEE International Conference
on Smart Grid Communications (SmartGridComm): Control and Operation of Respon-
sive Grids symposium, pages 1–6, 21 July 2017.

[72] L. Atzori, A. Iera, and G. Morabito. The internet of things: A survey. Elsevier Computer
networks, 54(15):2787–2805, 2010.

[73] J. Gubbi et al. Internet of Things (IoT): A vision, architectural elements, and future
directions. Future Generation Computer Systems, 29(7):1645–1660, 2013.

[74] L. Baroffio, L. Bondi, M. Cesana, A. E. Redondi, and M. Tagliasacchi. A visual sensor
network for parking lot occupancy detection in smart cities. In the IEEE 2nd World
Forum on Internet of Things (WF-IoT), pages 745–750, December 2015.

[75] M. Peng, Y. Li, Z. Zhao, and C. Wang. System architecture and key technologies for
5G heterogeneous cloud radio access networks. IEEE network, 29(2):6–14, 2015.

[76] Aleksandra Checko, Henrik L Christiansen, Ying Yan, Lara Scolari, Georgios Kardaras,
Michael S Berger, and Lars Dittmann. Cloud ran for mobile networks–a technology
overview. IEEE Communications surveys & tutorials, 17(1):405–426, 2015.

[77] T. Taleb, M. Corici, C. Parada, A. Jamakovic, S. Ruffino, G. Karagiannis, and
T. Magedanz. EASE: EPC as a service to ease mobile core network deployment over
cloud. IEEE Network, 29(2):78–88, 2015.

[78] S. Sun, M. Kadoch, L. Gong, and Bo Rong. Integrating network function virtualization
with SDR and SDN for 4G/5G networks. In IEEE Network, pages 54–59, May-June
2015.

[79] H. Hawilo, A. Shami, M. Mirahmadi, and R. Asal. NFV: State of the Art, Challenges
and Implementation in Next Generation Mobile Networks (vEPC). In IEEE Network,
pages 18–26, Nov-Dec 2014.

[80] A. Botta, W. De Donato, V. Persico, and A. Pescapé. On the integration of cloud
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