

Licence 2ème année, 2015-2016, Introduction aux probabilités

Feuille de TD n°7: Loi des Grands Nombres et Estimation.

Exercice 1 Des ornithologues tentent d'estimer le nombre N d'oiseaux présents dans une réserve naturelle. Pour cela, ils commencent par capturer q oiseaux, auxquels ils accrochent un petit bracelet autour de la patte, puis il les relâchent. Par la suite ils procèdent de la manière suivante. Ils capturent des oiseaux au hasard dans la réserve, et notent $X_i = 1$ si le i-eme oiseau capturé possède un bracelet, et $X_i = 0$ sinon. Ils relâchent ensuite l'oiseau.

- 1. Par quelle loi modéliser la variable X_i ? Ecrivez la loi des grands nombres pour les X_i .
- 2. On suppose que q = 100 et que les ornithologues ont capturé n = 500 oiseaux supplémentaires parmi lesquels ils ont trouvé 12 oiseaux portant un bracelet. En déduire une estimation du nombre total d'oiseaux dans la réserve.

Exercice 2 Une marche aléatoire sur un axe consiste en l'expérience suivante : on part (étape n=0) de la position origine, puis à chaque étape on ajoute 1 avec probabilité p ou on retranche 1 avec probabilité 1-p. On note Y_n la position obtenue à l'étape n, et Z_n le nombre de fois où on a ajouté 1 jusqu'à l'étape n.

- 1. Quelle est la loi de Z_n ? Exprimer Y_n en fonction de Z_n , et en déduire la loi de Y_n .
- 2. Montrer que $Y_n = \sum_{k=1}^n X_k$ où les X_k sont des variables indépendantes et identiquement distribuées dont on donnera la loi.
- 3. En déduire que $\frac{1}{n}Y_n$ converge presque sûrement vers une constante à déterminer.

Exercice 3 Soit $(X_k, k \ge 1)$ une suite de variables i.i.d. dont la loi commune a pour densité

$$f(x) = ce^{-\lambda|x-a|}$$
, où $c > 0$, $\lambda > 0$, $a \in \mathbb{R}$.

Les paramètres λ et a sont inconnus.

- 1. Calculer la valeur de c en fonction des autres paramètres.
- 2. Calculer $E(X_1)$ et $V(X_1)$.
- 3. Donner des estimateurs des paramètres a et λ .
- 4. Montrer que l'estimateur de a converge presque sûrement vers a lorsque n tend vers l'infini.

Exercice 4 Soit (X_1, \ldots, X_n) un n-échantillon de loi uniforme sur l'intervalle [0, b]. L'objet de cet exercice est d'estimer le paramètre inconnu b. On pose $B_n = \max(X_1, \ldots, X_n)$.

- 1. Calculer la fonction de répartition de \mathcal{B}_n et en déduire sa densité.
- 2. Calculer l'espérance et la variance de B_n . En déduire que B_n est un estimateur biaisé de b. On admetra que converge vers b.
- 3. Déduire de B_n un estimateur B'_n sans biais de b.
- 4. Quel autre estimateur de b aurions nous pu considérer?

Exercice 5 Soit X une variable aléatoire réelle ayant pour densité $f_X(x) = \frac{1}{\pi} \frac{1}{x^2+1}$, pour tout réel x. Cette loi s'appelle loi de Cauchy.

- 1. Vérifier que f_X est bien une densité de probabilité.
- 2. Calculer E(|X|). L'espérance est-elle définie?
- 3. Soit $(X_k, k \ge 1)$ une suite de variables indépendantes et de même loi que X, et on pose $\bar{X}_n = \frac{1}{n} \sum_{k=1}^n X_k$. On peut montrer qu'alors \bar{X}_n suit aussi la loi de Cauchy. Expliquer pourquoi ceci est un contre-exemple à la loi des grands nombres.