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The proofs of the results stated in the main article are gathered in Sec-
tion A. They hinge on technical lemmas presented and proved in Section B.
Two additional lemmas about the pathwise differentiability of two mappings
central to our analysis are recalled in Section C for completeness. A notation
index is given in Section D, to help the reader travel through the main ar-
ticle. Finally, a table and a figure summarizing the results of the simulation
study form Section E.

APPENDIX A: PROOFS

The notation a . b means that expression a is smaller than expression b
up to a universal multiplicative constant.

To alleviate notation, we introduce the indexing parameter ζ ∈ ∪n≥1Bn×
G1 which stands for a couple (β, g). For every ζ ≡ (β, g) ∈ ∪n≥1Bn × G1,
ρ ∈ R and ε ∈ E , we set

QY,ζ,ρ(ε) ≡ expit (logit(QY,β) + εHρ(g))(A.1)

and characterize QY,ζ,ρ(ε) ◦ ρ given by

(A.2) QY,ζ,ρ(ε) ◦ ρ(W ) = QY,ζ,ρ(ε)(ρ(W ),W ).

With ζn ≡ (βn, gn) and ζ0 ≡ (β0, g0), we set

Q∗Y,ζn,rn ≡ QY,ζn,rn(εn),

Q∗Y,ζ0,rn ≡ QY,ζ0,rn(ε0(rn))
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2 A. CHAMBAZ ET AL.

where ε0(rn) is defined in (4.3) with ρ ≡ rn. With both ζ = ζn and ζ = ζ0,
we also introduce Q∗Y,ζ,rn ◦ rn and d∗Y,ζ,rn given by

Q∗Y,ζ,rn ◦ rn(W ) ≡ Q∗Y,ζ,rn(rn(W ),W ),(A.3)

d∗Y,ζ,rn(O,Z) ≡ 1{A = rn(W )}
Z

(
Y −Q∗Y,ζ,rn(A,W )

)
.(A.4)

In particular, d∗Y,ζn,rn = d∗Y,n previously defined in (4.13). Finally, we denote
Q∗ζ,rn any Q ∈ Q such that the marginal distribution of W under Q is the
empirical measure and QY = Q∗Y,ζ,rn .

Lemmas 3.1, 3.2 and 3.3 are proven in Section A.1. Proposition 4.1 and
Theorem 4.2 in Section A.2 and Propositions 5.2, 5.3 and 5.4 in Section A.3.
Technical lemmas are presented and proven in Section B.

A.1. Proofs of Lemmas 3.1, 3.2 and 3.3.

Proof of Lemma 3.1. The key to the proof is the following identity:
for each g ∈ G, we have

(A.5) EQ0,g(QY,0(A,W )) = EQ0(QY,0(0,W )) + EQ0(qY,0(W )g(1|W )).

This is a straightforward consequence of the decomposition QY,0(A,W ) =
QY,0(0,W ) + AqY,0(W ). Moreover, (A.5) also holds when g takes its value
in [0, 1], hence for all treatment rules (TRs) as well.

Set n ≥ 1. Applying (A.5) with g = rn and g = r0 yields

EQ0,rn(QY,0(A,W )) = EQ0(QY,0(0,W )) + EQ0(qY,0(W )rn(W )),(A.6)

EQ0,r0(QY,0(A,W )) = EQ0(QY,0(0,W )) + EQ0(qY,0(W )r0(W )).(A.7)

Because EQ0,r0(QY,0(A,W )) = EQ0(QY,0(r0(W ),W )) = ψ0, subtracting
(A.6) and (A.7) entails

ψ0 − EQ0,rn(QY,0(A,W )) = EQ0 (qY,0(W )× (r0(W )− rn(W )))

≤ ‖rn − r0‖1.(A.8)

By definition of r0, the above LHS expression is non-negative, hence it co-
incides with ∆(rn, r0). This completes the proof of (3.6).

We now apply (A.5) with g = g0 to get

(A.9) EQ0,g0(QY,0(A,W )) = EQ0(QY,0(0,W )) + EQ0(qY,0(W )g0(1|W )).

Subtracting (A.9) and (A.7) yields the new equality

0 ≤ ψ0 − EQ0,g0(QY,0(A,W )) = EQ0 (qY,0(W )× (r0(W )− g0(1|W ))) .
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Based on (3.2), a case-by-case study depending on the sign of qY,0(W ) finally
reveals that

(A.10) 0 ≤ ψ0−EQ0,g0(QY,0(A,W )) ≤ t∞EQ0 (|qY,0(W )|)+ξ∞ ≤ t∞+ξ∞.

To obtain (3.7), we simply note that

0 ≤ ψ0 − EQ0,gn(QY,0(A,W ))

= ψ0 − EQ0,g0(QY,0(A,W ))

+EQ0,g0(QY,0(A,W ))− EQ0,gn(QY,0(A,W ))

≤ t∞ + ξ∞ + ∆(gn, g0)

by (A.10) and (3.5).

Proof of Lemma 3.2. Set n ≥ 1, p ≥ 1 and η > 0. There exists α > 0
such that PQ0(0 < |qY,0(W )| < α) ≤ ηp/2.

Note that |(rn − r0)(W )| ∈ {0, 1}. Moreover, |(rn − r0)(W )| = 1 implies
qY,βnqY,0(W ) ≤ 0. This justifies the first inequality below. The others easily
follow from the fact that |qY,0(W )| ≤ 1 and a case-by-case study depending
on whether 0 < |qY,0(W )| < α or not:

|qY,0(W )| × |(rn − r0)(W )|p ≤ |qY,0(W )| × 1{qY,βnqY,0(W ) ≤ 0}
≤ 1{0 < |qY,0(W )| < α}+ 1{|qY,0(W )| ≥ α}
×|qY,0(W )| × 1{|(qY,βn − qY,0)(W )| ≥ α}

≤ 1{0 < |qY,0(W )| < α}+ 1{|qY,0(W )| ≥ α}
×|qY,0(W )| × α−1|(qY,βn − qY,0)(W )|

≤ 1{0 < |qY,0(W )| < α}
+α−1|qY,0(W )|1/2 × |(qY,βn − qY,0)(W )|.

Taking the expectation under QW,0dµW on both sides yields

‖rn − r0‖pp ≤ PQ0(0 < |qY,0(W )| < α)

+ α−1

∫
|qY,0|1/2 × |(qY,βn − qY,0)|QW,0dµW

hence, by choice of α and the Cauchy-Schwartz inequality,

‖rn − r0‖pp ≤ ηp/2 + α−1‖qY,βn − qY,0‖2.

Therefore, ‖rn − r0‖p ≥ η implies ‖qY,βn − qY,0‖2 ≥ αηp/2. Consequently,
‖qY,βn − qY,0‖2 = oP (1) does yield ‖rn − r0‖p = oP (1). This completes the
proof.
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Proof of Lemma 3.3. Set n ≥ 1, p ≥ 1, p̄ = p/(p− 1) (p̄ =∞ if p = 1)
and p′ = min(p, 2).

By (A.5) with g = gn and g = g0, we obtain

∆(gn, g0) = |EQ0 [qY,0(W )× (gn(1|W )− g0(1|W ))]|.

Applying successively the triangle inequality and Hölder’s inequality yields

∆(gn, g0) ≤ EQ0 (|qY,0(W )| × |gn(1|W )− g0(1|W )|)
≤ ‖gn − g0‖p,

which is the result first stated in the lemma.
Suppose now that n is large enough so that Gn = G∞. Since G∞ is

c∞-Lipschitz, it holds that

|qY,0(W )| × |gn(1|W )− g0(1|W )|p

= |qY,0(W )| × |G∞(qY,βn(W ))−G∞(qY,0(W ))|p

. |qY,0(W )| × |qY,βn(W )− qY,0(W )|p

≤ |qY,0(W )| × |qY,βn(W )− qY,0(W )|p′ ,

where the last inequality is due to the fact that |qY,βn−qY,0| ≤ 1. Taking the

expectation underQW,0dµW gives the bound ‖gn−g0‖p . ‖qY,βn−qY,0‖
p′/p
p′ .

‖qY,βn − qY,0‖
p′/p
2 . This completes the proof.

A.2. Proofs of Proposition 4.1 and Theorem 4.2. Let us prove
Proposition 4.1.

Proof of Proposition 4.1. The convergence ‖qY,βn − qY,β0‖ = oP (1)
follows immediately from (4.1) and ‖QY,βn − QY,β0‖2,PQ0,g

ref
= oP (1). This

convergence is a consequence of Lemma B.1 with Θ ≡ Q1, Θn ≡ Q1,n, d the
distance induced on Θ by the norm ‖ · ‖2,P

Q0,g
ref

, Mn and Mn characterized

over Θ by Mn(QY ) ≡ PQ0,grefL(QY ) (which does not depend on n after all)

and Mn(QY ) ≡ Png
refL(QY )/Z = n−1

∑n
i=1 g

ref(Ai | Wi)L(QY )(Oi)/Zi.
Assumption A2 implies that (a) and (b) from Lemma B.1 are met (take
τn = QY,β0 and τ∗n = QY,βn,0). It remains to prove that (c) also holds or, in
other terms, that ‖Mn −Mn‖Q1,n = oP (1).

For any QY ∈ Θ, characterize `(QY ) by setting

`(QY )(O,Z) ≡ gref(A|W )L(QY )(O)/Z.

Then we can rewrite ‖Mn −Mn‖Q1,n as follows:
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‖Mn −Mn‖Q1,n = ‖Pn`− PQ0,grefL‖Q1,n

= ‖(Pn − PQ0,gn)`‖Q1,n = ‖Pn − PQ0,gn‖`(Q1,n).

The separability of `(Q1,n) follows from that of L(Q1,n). Let Fn be the enve-
lope function for L(Q1,n) from A4. By construction of gn, Z is bounded away
from 0, so there exists a constant c > 0 such that cFn is an envelope func-
tion for `(Q1,n). Moreover, JcFn(1, `(Q1,n)) = O(JFn(1, L(Q1,n)) = o(

√
n) by

A4. Therefore, Lemma B.3 applies and yields ‖Pn − PQ0,gn‖`(Q1,n) = oP (1)
by Markov’s inequality. Thus, we can apply Lemma B.1. It yields that
‖QY,βn −QY,β0‖2,PQ0,g

ref
= oP (1), which is the desired result.

Assume now that A1 and A5 also hold and set arbitrarily t > 0. Because
|rn − r0| ∈ {0, 1}, we can upper-bound ‖rn − r0‖22,P

Q0,g
ref

as follows:

‖rn − r0‖22,P
Q0,g

ref
= PQ0,gref1{|qY,0| > t} × |rn − r0|

+PQ0,gref1{|qY,0| ≤ t} × |rn − r0|
≤ t−1PQ0,gref |qY,0| × |rn − r0|+ PQ0,gref (0 < |qY,0| ≤ t)
. t−1‖rn − r0‖22 + tγ2 .

Optimizing in t yields

‖rn − r0‖2,P
Q0,g

ref
. ‖rn − r0‖γ2/2(1+γ2)

2 = oP (1).

We obtain that

‖gn − g0‖2,P
Q0,g

ref
. ‖gn − g0‖γ2/2(1+γ2)

2 = oP (1)

along the same lines as above. This completes the proof.

We now turn to the first part of Theorem 4.2:

Proposition A.1 (consistency of ψ∗n). Suppose that A2, A3 and A4
are met. Then it holds that ψ∗n − ψrn,0 = oP (1).

Proof of Proposition A.1. This is a three-part proof.
Step one: studying εn. Let us show that εn − ε0(rn) = oP (1). We apply

Lemma B.2 with Θ ≡ E , d the Euclidean distance, Zn and Zn characterized
over E by Zn(ε) = PQ0,g0DY,rn(QY,ζ0,rn(ε), g0), and

Zn(ε) = PnDY,rn(QY,ζn,rn(ε), gn)gn/Z,

see (A.1), (4.2) and (2.15) for the definitions of QY,ζ0,rn(ε) and QY,ζn,rn(ε).
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From the differentiability of ε 7→ Lkl(QY,ζ0,rn(ε)), validity of the dif-
ferentiation under the integral sign, and definition of ε0(rn) (4.3) in A3,
we deduce that Zn(ε0(rn)) = 0. By definition of εn (2.16), Zn(εn) = 0
too. Moreover, (d) from Lemma B.2 is met. Indeed, by differentiability of
ε 7→ DY,rn(QY,ζ0,rn(ε), g0) and validity of the differentiation under the inte-
gral sign, Zn : E → R is differentiable on E with a derivative given by

Z′n(ε) = −PQ0,g0

QY,ζ0,rn(ε) ◦ rn × (1−QY,ζ0,rn(ε) ◦ rn)

g0 ◦ rn

where g0◦rn is characterized by g0◦rn(W ) = g0(rn(W )|W ). By construction,
QY,ζ,r(ε) and g0 are bounded away from 0 and 1 uniformly in ζ ∈ ∪n≥1Bn×
G1, ρ ∈ R and ε ∈ E . Therefore, there exists a universal constant c such that
|Z′n(ε)| ≥ c > 0 for all ε ∈ E . Consequently, by the mean value theorem, for
all ε ∈ E , |Zn(ε)| ≥ c|ε− ε0(rn)|. This entails condition (d).

Applying Lemma B.2 finally requires verifying that (e) is met, i.e., prov-
ing that ‖Zn − Zn‖E = oP (1). Introduce Fn ≡ {fρ,ε : ρ ∈ r(Q1,n), ε ∈ E}
with

(A.11) fρ,ε(O,Z) ≡ 1{A = ρ(W )}
Z

(Y −QY,ζ0,ρ(ε)(A,W ))

for each (ρ, ε) ∈ r(Q1,n)× E . We start with the following derivation:

(A.12) ‖Zn(ε)− Zn(ε)‖E

= sup
ε∈E

∣∣∣Pn(frn,ε +
1{A = rn(W )}

Z
(QY,ζ0,rn(ε)−QY,ζn,rn(ε))

)
− PQ0,gnfrn,ε

∣∣∣
≤ ‖Pn − PQ0,gn‖Fn

+ sup
ε∈E

∣∣∣∣Pn1{A = rn(W )}
Z

(QY,ζ0,rn(ε)−QY,ζn,rn(ε))

∣∣∣∣ .
• Consider the first RHS term in (A.12). Set (ρ1, ε1), (ρ2, ε2) ∈ r(Q1,n)×
E . Since Z is bounded away from 0 and |Y −QY,ζ0,ρ2(ε2)(A,W )| ≤ 1,
it holds that

|(fρ1,ε1 − fρ2,ε2)(O,Z)| ≤ 1{A = ρ1(W )}
Z

×| (QY,ζ0,ρ1(ε1)−QY,ζ0,ρ2(ε2)) (A,W )|
+|1{A = ρ1(W )− 1{A = ρ2(W )}|

×
|Y −QY,ζ0,ρ2(ε2)(A,W )|

Z
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. |(QY,ζ0,ρ1(ε1)−QY,ζ0,ρ1(ε2)) (A,W )|
+ |(QY,ζ0,ρ1(ε2)−QY,ζ0,ρ2(ε2)) (A,W )|
+|ρ1(W )− ρ2(W )|.

Because expit is 1-Lipschitz, E is bounded and g0 is bounded away
from 0, this entails the bound

|(fρ1,ε1 − fρ2,ε2)(O,Z)| . |ε1 − ε2|
+|ε2| × |(Hρ1(g0)−Hρ2(g0))(O)|

+|ρ1(W )− ρ2(W )|
. |ε1 − ε2|+ |ρ1(W )− ρ2(W )|.(A.13)

This upper-bound notably implies that Fn is separable because r(Q1,n)
and E (seen as a class of constant functions) are separable. By A4,
J1(1, r(Q1,n)) = o(

√
n). Since E is bounded, there exists a bounded

envelope function F for E seen as a class of (constant) functions and
JF (1, E) is finite. Assume without loss of generality that F is also
an envelope function for Fn. By (A.13) and the trivial inequalities
(a + b)2 ≤ 2(a2 + b2) and

√
a+ b ≤

√
a +
√
b (valid for all a, b ≥

0), JF (1,Fn) = o(
√
n) (we will use repeatedly this argument in the

rest of the article, without mentioning its details). Therefore, we can
apply Lemma B.3 and conclude, with Markov’s inequality, that ‖Pn−
PQ0,gn‖Fn = oP (1).
• Consider next the second term in the RHS of (A.12). It is upper-

bounded by

∆n ≡ sup
ε∈E

Pn|QY,ζ0,rn(ε)−QY,ζn,rn(ε)|/Z.

Since expit is 1-Lipschitz, Q1,n is bounded away from 0 and 1, and
logit is Lipschitz on any compact subset of ]0, 1[, it holds that ∆n is
smaller than

sup
ε∈E

Pn |logit(QY,βn)− logit(QY,β0) + ε(Hrn(gn)−Hrn(g0))| /Z

. Pn|QY,βn −QY,β0 |/Z + Pn|1/gn − 1/g0|/Z
= PQ0,gn |QY,βn −QY,β0 |/Z + PQ0,gn |1/gn − 1/g0|/Z

+ (Pn − PQ0,gn)|QY,βn −QY,β0 |/Z
+ (Pn − PQ0,gn)|1/gn − 1/g0|/Z.(A.14)

Using the fact that gref is bounded away from 0 and 1 and the Cauchy-
Schwarz inequality, we readily see that PQ0,gn |QY,βn − QY,β0 |/Z .



8 A. CHAMBAZ ET AL.

PQ0,gref |QY,βn − QY,β0 | ≤ ‖QY,βn − QY,β0‖2,PQ0,g
ref

= oP (1) by Propo-

sition 4.1, whose assumptions are met here. We control PQ0,gn |1/gn −
1/g0|/Z similarly, using additionally that gn and g0 are uniformly
bounded away from 0 and 1 and that, for n large enough, Gn = G∞
is c∞-Lipschitz. Indeed, for n large enough, PQ0,gn |1/gn − 1/g0|/Z .
PQ0,gref |gn − g0| ≤ ‖gn − g0‖2,P

Q0,g
ref

and

‖gn − g0‖2,P
Q0,g

ref
= ‖G∞(qY,βn)−G∞(qY,β0)‖2,P

Q0,g
ref

. ‖qY,βn − qY,β0‖2,PQ0,g
ref

. ‖QY,βn −QY,β0‖2,PQ0,g
ref

= oP (1),(A.15)

as recalled earlier. Thus, the sum of the two first terms in the RHS
expression of (A.14) is oP (1).
We now turn to the third term of the RHS sum in (A.14). For anyQY ∈
Q1, introduce h1(QY ) characterized by h1(QY )(O,Z) ≡ |QY (A,W )−
QY,β0(A,W )|/Z. Obviously,

|(Pn − PQ0,gn)|QY,βn −QY,β0 |/Z| ≤ ‖(Pn − PQ0,gn)h1‖Q1,n

= ‖Pn − PQ0,gn‖h1(Q1,n).

The separability of Q1,n implies that of h1(Q1,n). Since Z is bounded
away from 0, it holds that h1(Q1) is uniformly bounded by a constant
c > 0 which can serve as a constant envelope function, and

Jc(1, h1(Q1,n)) = O(J1(1, {|QY −QY,β0 : QY ∈ Q1,n|}))
= O(J1(1,Q1,n)) = o(

√
n)

by A4. Therefore, Lemma B.3 applies and Markov’s inequality yields
‖Pn − PQ0,gn‖h1(Q1,n) = oP (1). We control the last term similarly.
Let n be large enough so that Gn = G∞. For any QY ∈ Q1, intro-
duce h2(QY ) characterized by h2(QY )(O,Z) ≡ |1/G∞(qY (A,W )) −
1/G∞(qY,β0(A,W ))|/Z. We have

|(Pn − PQ0,gn)|1/gn − 1/g0|/Z| ≤ ‖(Pn − PQ0,gn)h2‖Q1,n

= ‖Pn − PQ0,gn‖h2(Q1,n).

The separability ofQ1,n implies that of h2(Q1,n). Because Z is bounded
away from 0 and because G∞ is c∞-Lipschitz and bounded away from
0 and 1 too, it holds that h2(Q1) is uniformly bounded by a constant
c′ > 0 which can serve as a constant envelope function, and
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Jc′(1, h2(Q1,n)) = O(J1(1, {|qY − qY,β0 | : QY ∈ Q1,n}))
= O(J1(1, {|QY −QY,β0 | : QY ∈ Q1,n})) = O(J1(1,Q1,n)) = o(

√
n),

as we have seen before. Thus, ‖Pn−PQ0,gn‖h2(Q1,n) = oP (1), hence the
sum of the tow last terms in the RHS expression of (A.14) is oP (1).
We conclude that ∆n = oP (1).

Combining the results obtained on the first and second RHS terms in (A.12)
yields the desired convergence ‖Zn−Zn‖E = oP (1). We are now in a position
to apply Lemma B.1, which implies the stated convergence εn − ε0(rn) =
oP (1).

Step two: studying Q∗Y,ζn,rn. Let us now prove that

‖Q∗Y,ζn,rn −Q
∗
Y,ζ0,rn‖2,PQ0,g

ref
= oP (1).

For this, we equip Q1 × G1 × E − Q1 × G1 × E with a seminorm |||·|||1 such
that, for any two (QY,1, g1, ε1), (QY,2, g2, ε2) ∈ Q1 × G1 × E ,

|||(QY,1, g1, ε1)− (QY,2, g2, ε2)|||1 ≡ ‖QY,1 −QY,2‖2,P
Q0,g

ref

+‖g1 − g2‖2,P
Q0,g

ref
+ |ε1 − ε2|.

Proposition 4.1 and the first step of this proof imply that

|||(QY,βn , gn, εn)− (QY,β0 , g0, ε0(rn))|||1 = oP (1).

We also equip the set QRY − QRY with a seminorm |||·|||2 characterized as
follows: for any two (QY,ρ)ρ∈R, (Q

′
Y,ρ)ρ∈R ∈ QRY ,∣∣∣∣∣∣(QY,ρ)ρ∈R − (Q′Y,ρ)ρ∈R
∣∣∣∣∣∣

2
≡ sup

ρ∈R
‖QY,ρ −Q′Y,ρ‖2,PQ0,g

ref
.

Let f : Q1 × G1 × E → QRY be given by f(QY , g, ε) = (fρ(QY , g, ε))ρ∈R
where, for each ρ ∈ R,

(A.16) fρ(QY , g, ε)(O) ≡ expit (logit(QY (A,W )) + εHρ(g)(O)) .

Set (QY,1, g1, ε1), (QY,2, g2, ε2) ∈ Q1 × G1 × E and ρ ∈ R. Because (i) expit
is 1-Lipschitz, (ii) Q1 is bounded away from 0 and 1, and logit is Lipschitz
on any compact subset of ]0, 1[, (iii) G1 is uniformly bounded away from 0
and 1, (iv) E is a bounded set, it holds that

‖fρ(QY,1, g1, ε1)− fρ(QY,2, g2, ε2)‖2,P
Q0,g

ref

≤ ‖ logit(QY,1)− logit(QY,2)‖2,P
Q0,g

ref
+ ‖ε2(1/g1 − 1/g2)‖2,P

Q0,g
ref
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+ ‖(ε1 − ε2)/g1‖2,P
Q0,g

ref

. ‖QY,1 −QY,2‖2,P
Q0,g

ref
+ ‖g1 − g2‖2,P

Q0,g
ref

+ |ε1 − ε2|

= |||(QY,1, g1, ε1)− (QY,2, g2, ε2)|||1.(A.17)

Noting that the RHS expression does not depend on ρ then taking the
supremum in ρ ∈ R to the left yields

|||f(QY,1, g1, ε1)− f(QY,2, g2, ε2)|||2 . |||(QY,1, g1, ε1)− (QY,2, g2, ε2)|||1.

Therefore, the convergence |||(QY,βn , gn, εn)− (QY,β0 , g0, ε0(rn))|||1 = oP (1)
implies the convergence |||f(QY,βn , gn, εn)− f(QY,β0 , g0, ε0(rn))|||2 = oP (1).
In particular,

‖frn(QY,βn , gn, εn)− frn(QY,β0 , g0, ε0(rn))‖2,P
Q0,g

ref

= ‖Q∗Y,ζn,rn −Q
∗
Y,ζ0,rn‖2,PQ0,g

ref
= oP (1),

as we claimed.
Step three: studying ψ∗n. Let us first demonstrate that EQW,0(Q∗Y,ζ0,rn ◦

rn(W )) = ψrn,0, then that ψ∗n − ψrn,0 = oP (1). We have already shown that
Zn(ε0(rn)) = 0. Equivalently, by conditioning first on (A,W ) (second line)
then on W only (third line),

0 = Zn(ε0(rn))

= EQ0,g0

(
1{A = rn(W )}

g0(A|W )
(Y −Q∗Y,ζ0,rn(A,W ))

)
= EQ0,g0

(
1{A = rn(W )}

g0(A|W )
(QY,0(A,W )−Q∗Y,ζ0,rn(A,W ))

)
= EQ0,g0

(
QY,0(rn(W ),W )−Q∗Y,ζ0,rn(rn(W ),W )

)
= ψrn,0 − EQW,0(Q∗Y,ζ0,rn ◦ rn(W ))(A.18)

hence the claimed equality.
Let ψ∼n ≡ EQW,0(Q∗Y,ζn,rn◦rn(W )). By (A.18), the fact that gref is bounded

away from 0 and 1 and the Cauchy-Schwarz inequality, it holds that

|ψ∼n − ψrn,0|

=

∣∣∣∣EQW,0,gref (1{A = rn(W )}
gref(A|W )

(
Q∗Y,ζn,rn −Q

∗
Y,ζ0,rn

)
(A,W )

)∣∣∣∣
. ‖Q∗Y,ζn,rn −Q

∗
Y,ζ0,rn‖2,PQ0,g

ref
= oP (1).(A.19)
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Therefore, it suffices to show that ψ∗n − ψ∼n = oP (1) too to conclude.
Since Q∗Y,ζn,rn ◦ rn is a function of W only, we can write

|ψ∗n − ψ∼n | =
∣∣(Pn − PQ0,gn)Q∗Y,ζn,rn ◦ rn

∣∣ ≤ ‖Pn − PQ0,gn‖F ′n
where we define F ′n ≡ {QY,ζ,ρ(ε) ◦ ρ : ζ ∈ Bn × G1,n, ρ ∈ r(Q1,n), ε ∈
E}. By construction, F ′n is uniformly bounded by 1 which can serve as an
envelope function. Moreover, for every ζ1 ≡ (β1, g1), ζ2 ≡ (β2, g2) ∈ Bn ×
G1,n, ρ1, ρ2 ∈ r(Q1,n), ε1, ε2 ∈ E , because (i) |(ρ1 − ρ2)(W )| ∈ {0, 1}, (ii)
expit is 1-Lipschitz, (iii) Q1 is bounded away from 0 and 1, logit is Lipschitz
on any compact subset of ]0, 1[, and (iv) G1 is uniformly bounded away from
0 and 1, the following inequalities hold pointwise:

|QY,ζ1,ρ1(ε1) ◦ ρ1 −QY,ζ2,ρ2(ε2) ◦ ρ2|
=
∣∣(QY,ζ1,ρ1(ε1)−QY,ζ2,ρ2(ε2)

)
◦ ρ1

+
(
QY,ζ2,ρ2(ε2) ◦ ρ1 −QY,ζ2,ρ2(ε2) ◦ ρ2

)∣∣
≤
∣∣(QY,ζ1,ρ1(ε1)−QY,ζ2,ρ2(ε2)

)
◦ ρ1

∣∣
+ |ρ1 − ρ2|

∣∣(QY,ζ2,ρ2(ε2) ◦ ρ1 −QY,ζ2,ρ2(ε2) ◦ ρ2

)∣∣
. |(QY,β1 −QY,β2) ◦ ρ1|+ |ε1/g1(ρ1|·)− ε2/g2(ρ1|·)|+ |ρ1 − ρ2|
. |(QY,β1 −QY,β2) ◦ ρ1|+ |g1(ρ1|·)− g2(ρ1|·)|

+ |ε1 − ε2|+ |ρ1 − ρ2|
≤ |(QY,β1 −QY,β2) ◦ ρ1|+ |(QY,β1 −QY,β2) ◦ (1− ρ1)|

+ |g1(ρ1|·)− g2(ρ1|·)|+ |g1(1− ρ1|·)− g2(1− ρ1|·)|
+ |ε1 − ε2|+ |ρ1 − ρ2|

= |QY,β1 −QY,β2 |+ |Q
−
Y,β1
−Q−Y,β2 |(A.20)

+ 2|g1 − g2|+ |ε1 − ε2|+ |ρ1 − ρ2|

where, for every β ∈ ∪n≥1Bn, Q−Y,β is given by

Q−Y,β(A,W ) ≡ QY,β(1−A,W ).

This entails that F ′n is separable because Q1,n, G1,n, E (seen as a class of
constant functions with envelope function F ′ ≥ 1) and r(Q1,n) are separable
(the separability of G1,n follows straightforwardly from that of Q1,n, the
definition of G1,n and continuity of Gn). Let n be large enough so that
Gn = G∞. Inequality (A.20) and the facts that (i) G1,n ≡ {Gn(qY ) : QY ∈
Q1,n} = {G∞(qY ) : QY ∈ Q1,n} with G∞ c∞-Lipschitz and (ii) |qY,β1 −
qY,β2 | ≤ |QY,β1 −QY,β2 |+ |Q

−
Y,β1
−Q−Y,β2 | imply that

JF ′(1,F ′n) . JF ′(1,Q1,n) + JF ′(1,G1,n) + JF ′(1, E) + JF ′(1, r(Q1,n))
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. JF ′(1,Q1,n) + JF ′(1, E) + JF ′(1, r(Q1,n)) = o(
√
n)

by A4. Thus, Lemma B.3 applies and Markov’s inequality yields ‖Pn −
PQ0,gn‖F ′n = oP (1) hence |ψ∗n −ψ∼n | = oP (1). This completes the third step,
and the proof of Proposition A.1.

The second part of Theorem 4.2 revolves around a consequence of the
following result.

Proposition A.2 (first asymptotic linear expansion of ψ∗n). Suppose
that A2, A3, A4 and A4* are met. Then it holds that

(A.21) ψ∗n − ψrn,0 = (Pn − PQ0,gn)(d∗Y,ζ0,rn +DW,rn(Q∗ζ0,rn)) + oP (1/
√
n).

The asymptotic linear expansion (A.21) is obtained from the exact linear
expansion stated in the next lemma.

Lemma A.1 (exact linear expansion of ψ∗n). It follows from the definition
of ψ∗n that

ψ∗n − ψrn,0 = −PQ0,g0Drn(Q∗ζn,rn , g0)(A.22)

= (Pn − PQ0,gn)(d∗Y,ζ0,rn +DW,rn(Q∗ζ0,rn))

+(Pn − PQ0,gn)
(
(d∗Y,ζn,rn − d

∗
Y,ζ0,rn)

+(Q∗Y,ζn,rn −Q
∗
Y,ζ0,rn) ◦ rn

)
.(A.23)

Proof of Lemma A.1. Equality (A.22) readily follows from the defini-
tions of Drn(Q∗ζn,rn , g0), ψ∗n and ψrn,0.

We now turn to (A.23). Let us denote by Pn,gn the empirical distribution
of On weighted by gn(Ai|Wi)/gi(Ai|Wi). By construction of the fluctuation
(2.15) and definition of εn (2.16), it holds that Pn,gnDY,rn(Q∗Y,ζn,rn , gn) = 0.
Moreover, (2.17) can be rewritten as PnDW,rn(Q∗ζn,rn) = 0. Therefore, (A.22)
is equivalent to

(A.24) ψ∗n − ψrn,0 = (Pn − PQ0,g0)DW,rn(Q∗ζn,rn)

+
(
Pn,gnDY,rn(Q∗Y,ζn,rn , gn)− PQ0,g0DY,rn(Q∗Y,ζn,rn , g0)

)
.

Adding and subtracting (Pn − PQ0,g0)DW,rn(Q∗ζ0,rn) to the first term in the
RHS expression of (A.24) implies

(Pn−PQ0,g0)DW,rn(Q∗ζn,rn)

= (Pn − PQ0,g0)DW,rn(Q∗ζ0,rn)



SUPPLEMENTAL ARTICLE 13

+ (Pn − PQ0,g0)(DW,rn(Q∗ζn,rn)−DW,rn(Q∗ζ0,rn))

= (Pn − PQ0,g0)DW,rn(Q∗ζ0,rn)

+ (Pn − PQ0,g0)(Q∗Y,ζn,rn −Q
∗
Y,ζ0,rn) ◦ rn

= (Pn − PQ0,gn)DW,rn(Q∗ζ0,rn)(A.25)

+ (Pn − PQ0,gn)(Q∗Y,ζn,rn −Q
∗
Y,ζ0,rn) ◦ rn,

where the last equality is valid because (Pn − PQ0,g0) operates on functions
of W .

As for the second term in the RHS expression of (A.24), it equals

1

n

n∑
i=1

(
gn(Ai|Wi)

gi(Ai|Wi)

1{Ai = rn(Wi)}
gn(Ai|Wi)

(Yi −Q∗Y,ζn,rn(Ai,Wi))

−PQ0,g0

1{A = rn(W )}
g0(A|W )

(Y −Q∗Y,ζn,rn)

)
=

1

n

n∑
i=1

(
1{Ai = rn(Wi)}
gi(Ai |Wi)

(Yi −Q∗Y,ζn,rn(Ai,Wi))

−PQ0,gi

1{A = rn(W )}
gi(A |W )

(Y −Q∗Y,ζn,rn)

)
= (Pn − PQ0,gn)d∗Y,ζn,rn

= (Pn − PQ0,gn)d∗Y,ζ0,rn + (Pn − PQ0,gn)(d∗Y,ζn,rn − d
∗
Y,ζ0,rn).(A.26)

The equalities (A.24), (A.25) and (A.26) imply (A.23).

We now build upon Lemma A.1 to prove Proposition A.2.

Proof of Proposition A.2. By (A.23) in Lemma A.1, (A.21) follows
from

(A.27) (Pn − PQ0,gn)
(
(d∗Y,ζn,rn − d

∗
Y,ζ0,rn) + (Q∗Y,ζn,rn −Q

∗
Y,ζ0,rn) ◦ rn

)
= (Pn − PQ0,gn)(d∗Y,ζn,rn − d

∗
Y,ζ0,rn)

+ (Pn − PQ0,gn)(Q∗Y,ζn,rn −Q
∗
Y,ζ0,rn) ◦ rn = oP (1/

√
n).

This is a consequence of Lemma B.4, as shown hereafter in three steps.
Step one: preliminary. We will use the following notation: for all β ∈ Bn

and ε ∈ E ,

∆QY,β(ε) ≡ fr(QY,β) (QY,β, Gn(qY,β), ε)− fr(QY,β) (QY,β0 , g0, ε0(r(QY,β))) ,

∆dY,β(ε) ≡ f ′r(QY,β) (QY,β, Gn(qY,β), ε)− f ′r(QY,β) (QY,β0 , g0, ε0(r(QY,β))) ,
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where fρ(QY , g, ε) and f ′ρ(QY , g, ε) are respectively characterized in (A.16)
and by

(A.28) f ′ρ(QY , g, ε)(O,Z) ≡ 1{A = ρ(W )}
Z

(Y − fρ(QY , g, ε)(O)).

The two next steps mainly consist in controlling the uniform entropy inte-
grals of the two following sets:

Fn ≡ {∆dY,β(ε) : β ∈ Bn, ε ∈ E} ,
F ′n ≡ {∆QY,β(ε) ◦ r(QY,β) : β ∈ Bn, ε ∈ E} .

From now on, we assume that n is taken large enough to ensure β0 ∈ Bn and
Gn = G∞, ∆dY,β0(ε0(r0)) = ∆QY,β0(ε0(r0)) = 0 (recall that r0 ≡ r(QY,β0)).
Consequently, 0 ∈ Fn and 0 ∈ F ′n.

Step two: studying the first RHS term in (A.27). Since Z is bounded away
from 0 and 1, the elements of Fn are uniformly bounded by a constant c
which can serve as an envelope function for Fn. We assume without loss of
generality that c ≥ max(1, supε∈E |ε|). Obviously, (a) in Lemma B.4 is met
for Fn by the resulting (constant) sequence of (constant) envelope functions.
Moreover, ∆dY,βn(εn) − ∆dY,β0(ε0(r0)) = ∆dY,βn(εn) = d∗Y,ζn,rn − d∗Y,ζ0,rn
satisfies

|(∆dY,βn(εn)−∆dY,β0(ε0(r0)))(O,Z)|

=

∣∣∣∣1{A = rn(W )}
Z

(
Q∗Y,ζn,rn(A,W )−Q∗Y,ζ0,rn(A,W )

)∣∣∣∣
.
∣∣Q∗Y,ζn,rn(A,W )−Q∗Y,ζ0,rn(A,W )

∣∣
hence the convergence ‖∆dY,βn(εn) − ∆dY,β0(ε0(r0))‖2,PQ0

,gref = oP (1) fol-
lows from the second step of the proof of Proposition A.1, whose assumptions
are met.

It remains to prove that Fn is separable and satisfies (b) in Lemma B.4.
Set arbitrarily (β1, ε1), (β2, ε2) ∈ Bn × E and define g1 ≡ Gn(qY,β1), g2 ≡
Gn(qY,β2), ρ1 ≡ r(QY,β1) and ρ2 ≡ r(QY,β2). First, we note that

|(∆dY,β1(ε1)−∆dY,β2(ε2))(O,Z)|

=
∣∣∣1{A = ρ1(W )}

Z
∆QY,β1(ε1)(O)− 1{A = ρ2(W )}

Z
∆QY,β2(ε2)(O)

∣∣∣
. |1{A = ρ1(W )}(∆QY,β1(ε1)(O)−∆QY,β2(ε2)(O))

+ |(1{A = ρ1(W )} − 1{A = ρ2(W )})∆QY,β2(ε2)(O)|,
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which yields the pointwise inequality

(A.29) |∆dY,β1(ε1)−∆dY,β2(ε2)| . |∆QY,β1(ε1)−∆QY,β2(ε2)|+ |ρ1 − ρ2|.

Second, we focus on the left RHS term in (A.29). It holds pointwise that

|∆QY,β1(ε1)−∆QY,β2(ε2)|
≤|fρ1(QY,β1 , g1, ε1)− fρ1(QY,β2 , g2, ε2)|

+ |fρ1(QY,β0 , g0, ε0(ρ1))− fρ1(QY,β0 , g0, ε0(ρ2))|
+ |fρ1(QY,β2 , g2, ε2)− fρ2(QY,β2 , g2, ε2)|
+ |fρ1(QY,β0 , g0, ε0(ρ2))− fρ2(QY,β0 , g0, ε0(ρ2))|.

For the same reasons as those which lead to (A.17) and because Gn c∞-
Lipschitz implies |g1−g2| . |qY,β1−qY,β2 | ≤ |QY,β1−QY,β2 |+ |Q

−
Y,β1
−Q−Y,β2 |,

we derive the following pointwise inequalities from the previous one:

|∆QY,β1(ε1)−∆QY,β2(ε2)|
.|QY,β1 −QY,β2 |+ |g1 − g2|(A.30)

+ |ε1 − ε2|+ |ε0(ρ1)− ε0(ρ2)|
+ |Hρ1(g2)−Hρ2(g2)|+ |Hρ1(g0)−Hρ2(g0)|

.|QY,β1 −QY,β2 |+ |Q
−
Y,β1
−Q−Y,β2 |

+ |ε1 − ε2|+ |ε0(ρ1)− ε0(ρ2)|
+ |Hρ1(g2)−Hρ2(g2)|+ |Hρ1(g0)−Hρ2(g0)|.(A.31)

Consider the last term in the above RHS sum. Because G1 is uniformly
bounded away from 0 and 1, we have |Hρ1(g0)(O)−Hρ2(g0)(O)| . |1{A =
ρ1(W ) − 1{A = ρ2(W )}| = |ρ1(W ) − ρ2(W )| (we already used this argu-
ment to derive (A.13) in the first step of the proof of Proposition A.1).
The last but one term is dealt with similarly. It remains to control the
most delicate term, |ε0(ρ1) − ε0(ρ2)|. Let Z1,Z2 be characterized over E
by Zj(ε) ≡ PQ0,g0DY,ρj (QY,ζ0,ρj (ε), g0) = PQ0,g0fρj ,ε (j = 1, 2; see (A.11)
for the definition of fρ,ε). For the same reasons as in the first step of
the proof of Proposition A.1 (substitute ρ1 or ρ2 for rn), Z1(ε0(ρ1)) =
Z2(ε0(ρ2)) = 0 and |ε − ε0(ρ2)| . |Z2(ε)| for all ε ∈ E . Moreover, by
(A.13), |Z1(ε)− Z2(ε)| . ‖ρ1 − ρ2‖2,P

Q0,g
ref

for all ε ∈ E , hence in particular

|Z2(ε0(ρ1))| . ‖ρ1 − ρ2‖2,P
Q0,g

ref
. This entails the bound

(A.32) |ε0(ρ1)− ε0(ρ2)| . ‖ρ1 − ρ2‖2,P
Q0,g

ref
.

Consequently, (A.31) implies the pointwise inequality

|∆QY,β1(ε1)−∆QY,β2(ε2)| . |QY,β1 −QY,β2 |+ |Q
−
Y,β1
−Q−Y,β2 |
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+|ρ1 − ρ2|+ ‖ρ1 − ρ2‖2,P
Q0,g

ref
+ |ε1 − ε2|.(A.33)

Combining (A.29) and (A.33) finally yields (with the same notation as in
(A.20))

|∆dY,β1(ε1)−∆dY,β2(ε2)| . |QY,β1 −QY,β2 |+ |Q
−
Y,β1
−Q−Y,β2 |

+|ρ1 − ρ2|+ ‖ρ1 − ρ2‖2,P
Q0,g

ref
+ |ε1 − ε2|.(A.34)

Inequality (A.34) entails that Fn is separable because Q1,n, r(Q1,n) and
E (seen as a class of constant functions with constant envelope function c′)
are separable. Moreover, since the definition of the uniform entropy integral
involve a supremum over probability measures, (A.15) and (A.34) also imply
that, for each δ > 0,

Jc(δ,Fn) . Jc(δ,Q1,n) + Jc(δ, r(G1,n)) + Jc(δ, E).

Consequently, A4* guarantees that (b) in Lemma B.4 is met. Thus, Lem-
ma B.4 applies and yields

√
n(Pn − PQ0,gn)(d∗Y,ζn,rn − d

∗
Y,ζ0,rn) =

√
n(Pn − PQ0,gn)∆dY,βn(εn) = oP (1).

Step three: studying the second RHS term in (A.27). The elements of
F ′n are uniformly bounded by 1 hence by a constant c′ ≥ max(1, supε∈E |ε|)
which can serve as an envelope function for F ′n. Obviously, (a) in Lemma B.4
is met for F ′n by the resulting (constant) sequence of (constant) envelope
functions. Moreover, (A.20) implies that

∆QY,βn(εn) ◦ r(QY,βn)−∆QY,β0(ε0(r0)) ◦ r(QY,β0)

= ∆QY,βn(εn) ◦ rn
= (QY,ζn,rn(εn)−QY,ζ0,rn(ε0(rn))) ◦ rn
= (Q∗Y,ζn,rn −Q

∗
Y,ζ0,rn) ◦ rn

satisfies (with the same notational convention)

|∆QY,βn(εn) ◦ r(QY,βn)−∆QY,β0(ε0(r0)) ◦ r(QY,β0)|
. |QY,βn −QY,β0 |+ |Q

−
Y,βn
−Q−Y,β0 |+ |gn − g0|+ |εn − ε0(rn)|.

Because gref is bounded away from 0 and 1, this yields

‖∆QY,βn(εn) ◦ r(QY,βn)−∆QY,β0(ε0(r0)) ◦ r(QY,β0)‖2,P
Q0,g

ref

. ‖QY,βn −QY,β0‖2,PQ0,g
ref

+ ‖gn − g0‖2,P
Q0,g

ref
+ |εn − ε0(rn)| = oP (1)
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because each term in the above RHS sum is oP (1) by Proposition 4.1, the
first step of the proof of Proposition A.1 and (A.15).

It remains to prove that F ′n is separable and satisfies (b) in Lemma B.4.
For this, set arbitrarily (β1, ε1), (β2, ε2) ∈ Bn × E , define g1 ≡ Gn(qY,β1),
g2 ≡ Gn(qY,β2), ρ1 ≡ r(QY,β1) and ρ2 ≡ r(QY,β2), then note that

|∆QY,β1(ε1) ◦ ρ1 −∆QY,β2(ε2) ◦ ρ2|
≤ |∆QY,β1(ε1) ◦ ρ1 −∆QY,β1(ε1) ◦ ρ2|

+ |(∆QY,β1(ε1)−∆QY,β2(ε2)) ◦ ρ2|.

Consider the first term in the above RHS sum. Because (i) it equals zero
when ρ1 and ρ2 coincide, (ii) |ρ1 − ρ2| ∈ {0, 1}, and (iii) |∆QY,β1(ε1) −
∆QY,β1(ε1)| ≤ 2, we see that it is actually upper-bounded by 2|ρ1 − ρ2|. We
now turn to the second term. By (A.33), it satisfies the following pointwise
inequalities:

|(∆QY,β1(ε1)−∆QY,β2(ε2)) ◦ ρ2| . |QY,β1 −QY,β2 |+ |Q
−
Y,β1
−Q−Y,β2 |

+ |ρ1 − ρ2|+ ‖ρ1 − ρ2‖2,P
Q0,g

ref
+ |ε1 − ε2|.

We thus have

|∆QY,β1(ε1) ◦ ρ1 −∆QY,β2(ε2) ◦ ρ2| . |QY,β1 −QY,β2 |
+ |Q−Y,β1 −Q

−
Y,β2
|+ |ρ1 − ρ2|+ ‖ρ1 − ρ2‖2,P

Q0,g
ref

+ |ε1 − ε2|.

As argued in the previous step, the above pointwise inequality yields that
F ′n is separable and that, for each δ > 0,

Jc′(δ,F ′n) . Jc′(δ,Q1,n) + Jc′(δ, r(G1,n)) + Jc′(δ, E).

Consequently, A4* guarantees that (b) in Lemma B.4 is met. Thus, Lem-
ma B.4 applies and implies

√
n(Pn − PQ0,gn)(Q∗Y,ζn,rn − Q∗Y,ζ0,rn) ◦ rn =√

n(Pn−PQ0,gn)∆QY,βn(εn) ◦ r(QY,βn) = oP (1). Combining the conclusions
of steps two and three shows that (A.27) holds, and therefore completes the
proof.

Proposition A.2 has the following corollary. Proving it will complete the
proof of Theorem 4.2.

Corollary A.1 (second asymptotic linear expansion of ψ∗n and resulting
central limit theorem). Suppose that A1, A2, A3, A4, A4*, and A5
are met. Then (4.15) holds. Moreover, Σn = Σ0 + oP (1) with Σ0 > 0 and√
n/Σn(ψ∗n − ψ0,rn) converges in law to the standard normal distribution.
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Proof of Corollary A.1. This is a four-part proof.
Step one: preliminary. Recall (4.9), (4.10), (4.12), (4.13), (A.3), (A.4) and

set

f0 ≡ d∗W,0 + EQW,0(Q∗Y,ζ0,r0 ◦ r0(W )) + d∗Y,0 = Q∗Y,ζ0,r0 ◦ r0 + d∗Y,0,

fn ≡ d∗W,n + ψ∗n + d∗Y,n = Q∗Y,ζn,rn ◦ rn + d∗Y,n,

f0,n ≡ Q∗Y,ζ0,rn ◦ rn + d∗Y,ζ0,rn .

A straightforward adaptation of the argument leading to (A.18) in step three
of the proof of Proposition A.1 also yields EQW,0(Q∗Y,ζ0,r0 ◦ r0(W )) = ψ0. It
is then apparent that Pn(fn − ψ∗n) = PQ0,g0(f0 − ψ0) = 0. Now, note that
Σ0, Σn defined in (4.11) and (4.14) can be rewritten

Σ0 = PQ0,g0(f0 − ψ0)2 = PQ0,g0f
2
0 − ψ2

0,

Σn = Pn(fn − ψ∗n)2 = Pnf
2
n − ψ∗2n ,

and that Σ0 > 0 by A1. Introduce also Sn ≡ PQ0,gn(f0 − ψ0)2.
For each (f, ζ, r, ψ) among (f0, ζ0, r0, 0) or (f0, ζ0, r0, ψ0) or (fn, ζn, rn, 0)

or (fn, ζn, rn, ψ
∗
n), it holds that

PQ0,gn(f − ψ)2

=
1

n

n∑
i=1

PQ0,gi(f − ψ)2

= PQ0,g0

(
(Q∗Y,ζ,r ◦ r − ψ)2 + 2(Q∗Y,ζ,r ◦ r − ψ)DY,r(Q

∗
ζ,r, g0)

)
+

1

n

n∑
i=1

PQ0,g0

1{A = r(W )}
g0gi

(Y −Q∗Y,ζ,r)2

= PQ0,g0

(
(Q∗Y,ζ,r ◦ r − ψ)2 + 2(Q∗Y,ζ,r ◦ r − ψ)DY,r(Q

∗
Y,ζ,r, g0)

)
+ PQ0,g0

1{A = r(W )}
g0

(Y −Q∗Y,ζ,r)2 × 1

n

n∑
i=1

1

gi

and, similarly,

PQ0,g0(f − ψ)2

= PQ0,g0

(
(Q∗Y,ζ,r ◦ r − ψ)2 + 2(Q∗Y,ζ,r ◦ r − ψ)DY,r(Q

∗
Y,ζ,r, g0)

)
+ PQ0,g0

1{A = r(W )}
g0

(Y −Q∗Y,ζ,r)2 × 1

g0
.

Since (Y −Q∗Y,ζ,r)2 ≤ 1 and because g0, g
ref and all gis (i ≥ 1) are bounded

away from 0 and 1, applying the Cauchy-Schwarz inequality then yields

|PQ0,gn(f − ψ)2−PQ0,g0(f − ψ)2|
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=

∣∣∣∣∣PQ0,g0

1{A = r(W )}
g0

(Y −Q∗Y,ζ,r)2

(
1

n

n∑
i=1

1

gi
− 1

g0

)∣∣∣∣∣
. PQ0,g0

∣∣∣∣∣ 1n
n∑
i=1

1

gi
− 1

g0

∣∣∣∣∣ .
∥∥∥∥∥ 1

n

n∑
i=1

(gi − g0)

∥∥∥∥∥
2,P

Q0,g
ref

.(A.35)

Step two: studying Σn and Σ0. By Lemma A.2 (presented after this proof),
(A.35) teaches us that E(Sn) = Σ0 + o(1) and Sn = Σ0 + oP (1) (take
(f, ψ) = (f0, ψ0) in (A.35)).

Let us show now that Σn = Σ0 +oP (1) by proving Σn−Sn+(ψ∗2n −ψ2
0) =

Σn − Sn + oP (1) = oP (1). We use the following decomposition:

Σn − Sn + (ψ∗2n − ψ2
0) = Pnf

2
n − PQ0,gnf

2
0

= (Pn − PQ0,gn)f2
n + PQ0,gn(f2

n − f2
0 )

= (Pn − PQ0,gn)f2
n + PQ0,g0(f2

n − f2
0 ) + oP (1),(A.36)

where the last equality holds because PQ0,gnf
2 = PQ0,g0f

2 + oP (1) for both
f = f0 and f = fn by (A.35) (take (f, ψ) = (f0, 0) and (f, ψ) = (fn, 0)) and
Lemma A.2. Let us consider in turn the two RHS terms in (A.36).

• From now on, we assume that n is taken large enough to ensure Gn =
G∞. For all β ∈ Bn and ε ∈ E , let

dY,β(ε) ≡ f ′r(QY,β)(QY,β, Gn(qY,β), ε)

where f ′ρ is defined in (A.28). Introduce

Fn ≡
{
QY,ζ,ρ(ε) ◦ ρ+ dY,β(ε) : β ∈ Bn,

g = Gn(qY,β), ζ = (β, g), ρ = r(QY,β), ε ∈ E
}
.

In particular, f2
n = (QY,ζn,rn(εn) ◦ rn + dY,βn(εn))2 belongs to (Fn)2 ≡

{f2 : f ∈ Fn}. The following upper-bound motivates the definition of
Fn:

|(Pn − PQ0,gn)f2
n| ≤ ‖Pn − PQ0,gn‖(Fn)2 .

If ‖Pn − PQ0,gn‖(Fn)2 = oP (1) then (Pn − PQ0,gn)f2
n = oP (1) too. We

prove the former convergence by applying Lemma B.3 and Markov’s
inequality.
Since Fn is uniformly bounded, there exists a constant c larger than
max(1, supε∈E |ε|) which can serve as an envelope function to both
Fn and (Fn)2. Set arbitrarily (β1, ε1), (β2, ε2) ∈ Bn × E , define g1 =
Gn(qY,β1), g2 = Gn(qY,β2), ζ1 = (β1, g1) , ζ2 = (β2, g2), ρ1 = r(QY,β1),
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ρ2 = r(QY,β2), let f1 ≡ QY,ζ1,ρ1(ε1) ◦ ρ1 + dY,β1(ε1), f2 ≡ QY,ζ2,ρ2(ε2) ◦
ρ2 +dY,β2(ε2). Because |f2

1−f2
2 | . |f1−f2|, it holds that Jc(1, (Fn)2) .

Jc(1,Fn) and the separability of Fn implies that of (Fn)2. So, we now
focus on Fn.
Obviously, |f1−f2| ≤ |QY,ζ1,ρ1(ε1)◦ρ1−QY,ζ2,ρ2(ε2)◦ρ2|+ |dY,β1(ε1)−
dY,β2(ε2)|. The first RHS is controlled in (A.20). We deal with the
second one in the same spirit as in step two of the proof of Proposi-
tion A.2. First,

|(dY,β1(ε1)− dY,β2(ε2))(O,Z)|

=

∣∣∣∣1{A = ρ1(W )}
Z

(Y − fρ1(QY,β1 , g1, ε1)(O))

− 1{A = ρ2(W )}
Z

(Y − fρ2(QY,β2 , g2, ε2)(O))

∣∣∣∣
. |1{A = ρ1(W )}(fρ1(QY,β1 , g1, ε1)(O)− fρ2(QY,β2 , g2, ε2)(O))|

+ | (1{A = ρ1(W )} − 1{A = ρ2(W )}) fρ2(QY,β2 , g2, ε2)(O)|

which yields

|dY,β1(ε1)−dY,β2(ε2)| . |fρ1(QY,β1 , g1, ε1)−fρ2(QY,β2 , g2, ε2)|+|ρ1−ρ2|.

Second, the previous pointwise inequality implies

|dY,β1(ε1)−dY,β2(ε2)| . |QY,β1−QY,β2 |+ |g1−g2|+ |ε1− ε2|+ |ρ1−ρ2|.

In summary,

(A.37) |f1 − f2| . |QY,β1 −QY,β2 |+ |Q
−
Y,β1
−Q−Y,β2 |

+ |g1 − g2|+ |ε1 − ε2|+ |ρ1 − ρ2|.

Since Q1,n hence G1,n (already proven), r(Q1,n) and E (seen as a class
of constant functions with constant envelope c) are separable, (A.37)
implies that Fn is separable. Moreover, (A.37) also implies

Jc(1,Fn) . Jc(1,Q1,n) + Jc(1, r(Q1,n)) + Jc(1, E)

(see the argument following (A.20)) which by A4 yields in turn that
Jc(1,Fn) = o(

√
n). Thus, (Fn)2 is separable, Jc(1, (Fn)2) = o(

√
n),

Lemma B.3 applies and teaches us that E(‖Pn−PQ0,gn‖(Fn)2) = o(1),
and finally Markov’s inequality implies ‖Pn − PQ0,gn‖(Fn)2 = oP (1).
This completes the study of the first term in the RHS of (A.36).
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• To rely more easily on all the results obtained so far, we first note that

|PQ0,g0(f2
n − f2

0 )| ≤ |PQ0,g0(f2
n − f2

0,n)|+ |PQ0,g0(f2
0,n − f2

0 )|
≤ PQ0,g0 |f2

n − f2
0,n|+ PQ0,g0 |f2

0,n − f2
0 |

. PQ0,g0 |fn − f0,n|+ PQ0,g0 |f0,n − f0|
≤ ‖fn − f0,n‖2,P

Q0,g
ref

+ ‖f0,n − f0‖2,P
Q0,g

ref
,

where the last upper-bound follows from the Cauchy-Schwarz inequal-
ity and the fact that g0 and gref are bounded away from 0 and 1.
Now,

‖fn − f0,n‖2,P
Q0,g

ref
≤ ‖(Q∗Y,ζn,rn −Q

∗
Y,ζ0,rn) ◦ rn‖2,P

Q0,g
ref

+ ‖d∗Y,n − d∗Y,ζ0,rn‖2,PQ0,g
ref

and we already proved that ‖(Q∗Y,ζn,rn − Q∗Y,ζ0,rn) ◦ rn‖2,P
Q0,g

ref
=

oP (1) (see step two of the proof of Proposition A.1) and ‖d∗Y,n −
d∗Y,ζ0,rn‖2,PQ0,g

ref
= ‖∆dY,βn(εn)‖2,P

Q0,g
ref

= oP (1) (see step two of

proof of Proposition A.2). Therefore, ‖fn − f0,n‖2,P
Q0,g

ref
= oP (1) and

it suffices to show that ‖f0,n − f0‖2,P
Q0,g

ref
= oP (1) too to obtain the

desired convergence PQ0,g0(f2
n − f2

0 ) = oP (1).
As previously, we first note that

‖f0,n − f0‖2,P
Q0,g

ref
≤ ‖Q∗Y,ζ0,rn ◦ rn −Q

∗
Y,ζ0,r0 ◦ r0‖2,P

Q0,g
ref

+ ‖d∗Y,ζ0,rn − d
∗
Y,ζ0,r0‖2,PQ0,g

ref
.

By (A.20) and (A.32) in step two of the proof of Proposition A.2, it
holds that

‖Q∗Y,ζ0,rn ◦ rn −Q
∗
Y,ζ0,r0 ◦ r0‖2,P

Q0,g
ref

. ‖ε0(rn)− ε0(r0)‖2,P
Q0,g

ref

+‖rn − r0‖2,P
Q0,g

ref

. ‖rn − r0‖2,P
Q0,g

ref

with ‖rn−r0‖2,P
Q0,g

ref
= oP (1) by Proposition 4.1, whose assumptions

are met. Once again, we control the last remaining term in the same
spirit as in step two of the proof of Proposition A.2: from the upper-
bound

|(d∗Y,ζ0,rn−d
∗
Y,ζ0,r0)(O,Z)|
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. |1{A = rn(W )}(Q∗Y,ζ0,rn −Q
∗
Y,ζ0,r0))(A,W )|(A.38)

+ |1{A = rn(W )} − 1{A = r0(W )}|
. |ε0(rn)− ε0(r0)|+ |rn(W )− r0(W )|(A.39)

we deduce that

‖d∗Y,ζ0,rn − d
∗
Y,ζ0,r0‖2,PQ0,g

ref
. ‖rn − r0‖2,P

Q0,g
ref

= oP (1).

In summary, ‖f0,n−f0‖2,P
Q0,g

ref
= oP (1), and this completes the study

of the second term in the RHS of (A.36).

By combining the results of the above two-step study of the RHS sum in
(A.36) and (A.36) itself we finally get the stated convergence Σn = Σ0 +
oP (1), thus completing step two of the current proof.

Step three: deriving (4.15) from (A.21). The asymptotic linear expansion
(A.21) rewrites as

ψ∗n − ψrn,0 = (Pn − PQ0,gn)f0,n + oP (1/
√
n)

= (Pn − PQ0,gn)f0 + (Pn − PQ0,gn)(f0,n − f0) + oP (1/
√
n),

hence (4.15) follows from the convergence

(Pn − PQ0,gn)(f0,n − f0) = oP (1/
√
n),

which is a consequence of Lemma B.4.
For each n ≥ 1, introduce the class

F ′n ≡ {Q∗Y,ζ0,ρ ◦ ρ+ d∗Y,ζ0,ρ − f0 : ρ ∈ r(Q1,n)}.

In particular, f0,n−f0 ∈ F ′n (take ρ = rn), and we have already proven in the
previous step of the current proof that ‖f0,n−f0‖2,P

Q0,g
ref

= oP (1). The class

F ′n is uniformly bounded, so there exists a constant c′ ≥ 1 which can serve
as an envelope function to both F ′n and r(Q1,n). Obviously, the resulting
(constant) sequence of (constant) envelope functions satisfies condition (a)
in Lemma B.4. Set arbitrarily ρ1, ρ2 ∈ r(Q1,n). We have

|(Q∗Y,ζ0,ρ1 ◦ ρ1 + d∗Y,ζ0,ρ1 − f0)− (Q∗Y,ζ0,ρ1 ◦ ρ2 + d∗Y,ζ0,ρ2 − f0)|
≤ |Q∗Y,ζ0,ρ1 ◦ ρ1 −Q∗Y,ζ0,ρ1 ◦ ρ2|+ |d∗Y,ζ0,ρ1 − d

∗
Y,ζ0,ρ2 |.

By (A.20), (A.32) in step two of the proof of Proposition A.2 and (A.39)
with (ρ1, ρ2) substituted for (rn, r0), this inequality yields
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|(Q∗Y,ζ0,ρ1 ◦ ρ1 + d∗Y,ζ0,ρ1 − f0)− (Q∗Y,ζ0,ρ1 ◦ ρ2 + d∗Y,ζ0,ρ2 − f0)|
. |ε0(ρ1)− ε0(ρ2)|+ |ρ1 − ρ2| . ‖ρ1 − ρ2‖2,P

Q0,g
ref

+ |ρ1 − ρ2|.

Consequently, F ′n is separable because r(Q1,n) is separable. Moreover, since
the definition of the uniform entropy integral involve a supremum over prob-
ability measures, the above pointwise inequality entails that, for each δ > 0,
Jc′(δ,F ′n) . Jc′(δ, r(Q1,n)), so that condition (b) in Lemma B.4 is met by
A4*. Applying Lemma B.4 then gives (Pn−PQ0,gn)(f0,n−f0) = oP (1/

√
n),

hence the validity of (4.15).
Step four: deducing the limiting normal distribution from (4.15). We first

argue that (4.15) implies the converges in law to the standard normal dis-
tribution of

√
n/Σ0(ψ∗n − ψ0). This is a consequence of [5, Theorem 3.3.7]

because (i) Sn/E(Sn)− 1 = oP (1), and (ii) for each α > 0, E(Pnf
2
01{f2

0 ≥
α2nE(Sn)}) = o(E(Sn)) trivially holds since f0 is bounded and E(Sn) =
Σ0 +o(1) with Σ0 > 0. Then Slutsky’s lemma and Σn = Σ0 +oP (1) yield the
convergence in law of

√
n/Σn(ψ∗n − ψ0) to the same limiting distribution.

This completes the proof.

Lemma A.2. The convergence ‖gn − g0‖2,P
Q0,g

ref
= oP (1) implies that

‖n−1
∑n

i=1(gi − g0)‖2,P
Q0,g

ref
converges to 0 both in probability and in L1.

Proof of Lemma A.2. Since G is uniformly bounded, the convergence
‖gn − g0‖2,P

Q0,g
ref

= oP (1) implies E(‖gn − g0‖2,P
Q0,g

ref
) = o(1). Now, by

convexity then Cesaro’s lemma,

E

∥∥∥∥∥ 1

n

n∑
i=1

(gi − g0)

∥∥∥∥∥
2,P

Q0,g
ref

 ≤ 1

n

n∑
i=1

E
(
‖(gi − g0)‖2,P

Q0,g
ref

)
= o(1).

This convergence in L1 implies the convergence in probability because G is
uniformly bounded.

A.3. Proofs of Propositions 4.2, 5.2, 5.3 and 5.4.

Proof of Proposition 4.2. Set a probability measure µ̃ on the mea-
sured space A×W. Denote µ̄ the marginal probability measure induced by
µ̃ on W. Let {δn}n≥1 be a sequence of positive numbers such that δn = o(1)
and set ε > 0.

Since r(Q1,n) is a subset of a fixed VC-class of functions taking values in
[0, 1], there exists a constant c > 0 such that, for all 0 < ε < 1,

log sup
µ
N(ε‖1‖2,µ, r(Q1,n), ‖ · ‖2,µ) . log(ε−1) + c
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[7, Theorem 2.6.7], where 1 serves as a fixed (and constant) envelope function
for r(Q1,n) and the supremum is taken over all probability measures µ on

W. It follows easily that J1(δn, r(Q1,n)) .
∫ δn

0

√
log(ε−1) + cdε = o(1). In

particular, the choice δn = 1/
√
n yields J1(1, r(Q1,n)) = o(

√
n).

We now turn to Q1,n. Let {f−j : 1 ≤ j ≤ N(ε,F−, ‖ · ‖2,µ̄)} and {f+
j :

1 ≤ j ≤ N(ε,F+, ‖ · ‖2,µ̄)} be two collections of functions from W to R such
that the unions of the L2(µ̄)-balls of radius ε centered at f−j or f+

j cover F−
or F+, respectively. Choose arbitrarily QY,β ∈ Q1,n, with β ≡ (f−, f+) ∈
Bn. We may assume without loss of generality that ‖f− − f−1 ‖2,µ̄ ≤ ε and
‖f+ − f+

1 ‖2,µ̄ ≤ ε. Introduce β1 ≡ (f−1 , f
+
1 ) and QY,β1 defined as in (4.7)

with β1 substituted for β (the fact that β1 may fall outside Bn is not a
concern). Now, observe that

|QY,β −QY,β1 |2 ≤
(
|f− − f−1 |+ |f

+ − f+
1 |
)2 ≤ 2

(
|f− − f−1 |

2 + |f+ − f+
1 |

2
)

hence

‖QY,β −QY,β1‖2,µ̃ ≤
√

2
(
‖f− − f−1 ‖2,µ̄ + ‖f+ − f+

1 ‖2,µ̄
)
≤ 2
√

2ε.

This entails that

N(ε,Q1,n, ‖ · ‖2,µ̃) ≤ N(ε/2
√

2,F−, ‖ · ‖2,µ̃)×N(ε/2
√

2,F+, ‖ · ‖2,µ̃).

Since ‖1‖2,µ̄ = 1, ‖2‖2,µ̄ = 2 and because ‖1‖2,µ̃ = 1 where 1 serves as a
(constant) envelope function to Q1,n, (4.5), (4.6) and the previous bound
imply the existence of α ∈ [0, 1) (independent of µ̃) such that

(A.40)
√

logN(ε‖1‖2,µ̃,Q1,n, ‖ · ‖2,µ̃) .

(
1

ε

)α
.

Taking the supremum over all probability measures µ̃ on the measured space
A ×W and integrating wrt ε then yield J1(δn,Q1,n) = o(1). In particular,
the choice δn = 1/

√
n gives J1(1,Q1,n) = o(

√
n).

We now turn to Lls(Q1,n), which admits 1 as a (constant) envelope func-
tion. Simply observe that

|L(QY,β)(O)−L(QY,β1)(O)|
= |(Y −QY,β(A,W ))2 − (Y −QY,β1(A,W ))2|
= |2Y −QY,β(O)−QY,β1(O)| × |QY,β(O)−QY,β1(O)|
. |QY,β(O)−QY,β1(O)|,

which entails J1(1, Lls(Q1,n)) = O(J1(1,Q1,n)) = o(1). This completes the
proof.
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Proof of Proposition 5.2. Arbitrarily set t > 0. By the LHS equality
in (A.8), shown while proving Lemma 3.1, we first get

0 ≤ ψ0 − ψrn,0 ≤ EQ0 (|qY,0(W )| × |rn(W )− r0(W )|)
= EQ0 (|qY,0(W )| × 1{rn(W ) 6= r0(W )})
= EQ0 (|qY,0(W )| × 1{rn(W ) 6= r0(W )}

× (1{|qY,0(W )| ≥ t}+ 1{|qY,0(W )| < t})) .

Recall that rn(W ) 6= r0(W ) is equivalent to qY,βnqY,β0(W ) < 0 and therefore
implies |(qY,βn − qY,0)(W )| ≥ |qY,0(W )|. Thus, the above inequality entails
that 0 ≤ ψ0 − ψrn,0 is smaller than

(A.41) EQ0 (|(qY,βn − qY,0)(W )| × 1{|(qY,βn − qY,0)(W )| ≥ |qY,0(W )| ≥ t})

+ EQ0

(
|qY,0(W )|1/3 × |(qY,βn − qY,0)(W )|2/3 × 1{|qY,0(W )| < t}

)
.

First, we note that the first term in (A.41) is bounded by

EQ0 (|(qY,βn − qY,0)(W )| × 1{|(qY,βn − qY,0)(W )| ≥ |qY,0(W )| ≥ t})

≤ EQ0

(
|qY,0(W )|

t
×

(qY,βn − qY,0)2(W )

t

)
= t−2‖qY,βn − qY,0‖22.

Second, Hölder’s inequality and A5* yield that second term in (A.41) is
bounded by

‖qY,βn − qY,0‖
2/3
2 × PQ0 (0 < |qY,0(W )| ≤ t)2/3 . t2γ2/3‖qY,βn − qY,0‖

2/3
2 .

In summary, we have proven that

0 ≤ ψ0 − ψrn,0 . t−2‖qY,βn − qY,0‖22 + t2γ2/3‖qY,βn − qY,0‖
2/3
2 .

Optimizing in t finally yields (5.1). In conclusion, ‖qY,βn−qY,0‖2 = oP (1/nγ3)
does imply ψ0 − ψrn,0 = oP (1/

√
n) because 2(1 + γ2)/(3 + γ2)× γ3 = 1/2.

The claim on the confidence interval readily follows from Proposition 5.1
and the property ψ0 − ψrn,0 = oP (1/

√
n). This completes the proof.

Proof of Proposition 5.3. Since ψ∗n and n−1
∑n

i=1 Yi are known qu-
antities, we focus on

(A.42)
√
nΩE

n ≡
√
n

(
ψ∗n + En −

1

n

n∑
i=1

Yi

)
=
√
n (ψ∗n − PnQY,0 ◦ rn) .
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By definition of ψrn,0 (4.4) and (4.15), it holds that

√
nΩE

n =
√
n(ψ∗n − ψrn,0)−

√
n(Pn − PQ0,gn)QY,0 ◦ rn

=
√
n(Pn − PQ0,gn)(d∗Y,0 + d∗W,0 −QY,0 ◦ r0)

+
√
n(Pn − PQ0,gn)QY,0 ◦ (rn − r0) + oP (1).

Arguments similar to those developed in Section A.2 to prove Corollary A.1
successively yield ΣE

n = ΣE
0 +oP (1),

√
n(Pn−PQ0,gn)QY,0◦(rn−r0) = oP (1),

(A.43)
√
nΩE

n =
√
n(Pn − PQ0,gn)(d∗Y,0 +Q∗W,ζ0,r0 −QY,0 ◦ r0) + oP (1)

and the convergence in distribution of
√
n/ΣE

nΩE
n to the standard normal

distribution. This justifies the validity of the proposed asymptotic confidence
interval.

Proof of Proposition 5.4. This is a three-step proof.
Step one: preliminary. Let us assume for the time being that we also

observe the variables U1, . . . , Un in addition to O1, . . . , On. The resulting
counterpart to On is denoted On ≡ ((O1, U1), . . . , (On, Un)) with convention
O0 ≡ ∅. Likewise, the resulting counterpart to the empirical measure Pn is
Pn. Since the sequence {Un}n≥1 consists of i.i.d. variables independent from
{On}n≥1, a distribution PQ,g ∈M for (O,Z) yields univocally a distribution
PQ,g for (O,Z,U). For a measurable function f : O × [0, 1] × U → Rd, we
denote Pnf ≡ n−1

∑n
i=1 f(Oi, Zi, Ui) and PQ,gf ≡ EPQ,g(f(O,Z,U)).

Neglecting this new source of information, we carry out the exact same
statistical procedure as developed and studied in Sections 2, 3, 4, 5.1 and
5.2. If we write

PQ0,gif ≡ EPQ0,gi
[f(Oi, Zi, Ui)|Oi−1],

PQ0,gnf ≡ 1

n

n∑
i=1

PQ0,gif

for the counterparts to PQ0,gif and PQ0,gnf (each i = 1, . . . , n), then (A.42)
reads

(A.44)
√
nΩE

n =
√
n(ψ∗n − PnQY,0 ◦ rn)

and (A.43) still holds and reads

(A.45)
√
nΩE

n =
√
n(Pn − PQ0,gn)(d∗Y,0 +Q∗W,ζ0,r0 −QY,0 ◦ r0) + oP (1).
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Step two: inferring in the causal world. For ρ = r0 and ρ = rn, we set
QY,0 ◦ ρ(W,U) = QY,0(ρ(W ),W,U). Since ψ∗n and n−1

∑n
i=1 Yi are known

quantities, we focus on

√
nΩC

n ≡
√
n

(
ψ∗n + Cn −

1

n

n∑
i=1

Yi

)
=
√
n (ψ∗n − PnQY,0 ◦ rn) .

By (A.44), (A.45), and because (5.6) implies PQ0,gn(QY,0 − QY,0) ◦ rn =
PQ0,g0(QY,0 −QY,0) ◦ rn = 0, it holds that

√
nΩC

n

=
√
nΩE

n −
√
nPn(QY,0 ◦ rn −QY,0 ◦ rn)

=
√
n(Pn − PQ0,gn)(d∗Y,0 +Q∗W,ζ0,r0 −QY,0 ◦ r0)

−
√
n(Pn − PQ0,gn)(QY,0 −QY,0) ◦ rn + oP (1)

=
√
n(Pn − PQ0,gn)(d∗Y,0 +Q∗W,ζ0,r0 −QY,0 ◦ r0)

−
√
n(Pn − PQ0,gn)(QY,0 −QY,0) ◦ r0

−
√
n(Pn − PQ0,gn) ((QY,0 −QY,0) ◦ rn − (QY,0 −QY,0) ◦ r0) + oP (1).

Define f0 ≡ d∗Y,0 +Q∗W,ζ0,r0 − (QY,0 ◦ r0 − ψ0), χ0 ≡ (QY,0 −QY,0) ◦ r0, and

ΣC
0 ≡ PQ0,g0(f0−χ0)2. Arguments similar to those developed in Section A.2

to prove Corollary A.1 successively yield

√
n(Pn − PQ0,gn)((QY,0 −QY,0) ◦ rn − χ0) = oP (1),
√
nΩC

n =
√
n(Pn − PQ0,gn)(f0 − χ0) + oP (1)

and the convergence in distribution of
√
n/ΣC

0ΩC
n to the standard normal

distribution.
Step three: inferring in the real world. At this stage, there is still one

issue to solve: it is not possible to infer ΣC
0 because, contrary to f0 which is

a function of O, χ0 is a function of (O,U) and we actually do not observe
U1, . . . , Un. Fortunately, it holds that

(A.46) ΣC
0 = PQ0,g0f

2
0 − PQ0,g0χ

2
0 = ΣE

0 − PQ0,g0χ
2
0 ≤ ΣE

0 ,

the inequality justifying our claim on the proposed asymptotic confidence
interval.

It only remains to prove the LHS equality in (A.46), which is equivalent
to PQ0,g0f0χ0 = PQ0,g0χ

2
0. First, we note that

PQ0,g0f0χ0 = PQ0,g0

(
Q∗W,ζ0,r0 − (QY,0 ◦ r0 − ψ0)

)
χ0 + PQ0,g0d

∗
Y,0χ0.
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By the tower rule and (5.6), the first RHS term in this sum equals

EPQ0,g0

[
(Q∗W,ζ0,r0(W )− (QY,0 ◦ r0(W )− ψ0))

× EPQ0,g0

(
QY,0(r0(W ),W,U)−QY,0(r0(W ),W )

∣∣W )] = 0.

Thus, proving the LHS equality in (A.46) boils down to showing that the
second term equals PQ0,g0χ

2
0. By definitions of d∗Y,0 (4.10) and of Y in the

causal model, the tower rule and (5.6) imply that the second term equals

EPQ0,g0

[
1{A = r0(W )}

Z
(QY,0(r0(W ),W,U)−QY,0(r0(W ),W ))

× EPQ0,g0

(
Y −Q∗Y,0(r0(W ),W )

∣∣A,W,U)]
= EPQ0,g0

[
1{A = r0(W )}

Z
(QY,0(r0(W ),W,U)−QY,0(r0(W ),W ))

×
(
QY,0(r0(W ),W,U)−Q∗Y,0(r0(W ),W )

)]
= EPQ0,g0

[
1{A = r0(W )}

Z
(QY,0(r0(W ),W,U)−QY,0(r0(W ),W ))2

]
+ EPQ0,g0

[
1{A = r0(W )}

Z

(
QY,0(r0(W ),W )−Q∗Y,0(r0(W ),W )

)
× EPQ0,g0

(
QY,0(r0(W ),W,U)−QY,0(r0(W ),W )

∣∣W )]
= EPQ0,g0

[
(QY,0(r0(W ),W,U)−QY,0(r0(W ),W ))2

× E
(
1{A = r0(W )}

Z

∣∣∣∣W,U)]
= EPQ0,g0

[
(QY,0(r0(W ),W,U)−QY,0(r0(W ),W ))2

]
= PQ0,g0χ

2
0.

This completes the proof.

APPENDIX B: TECHNICAL LEMMAS

B.1. Lemmas for M- and Z-estimation. The first lemma is a simple
adaptation of [7, Corollary 3.2.3].
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Lemma B.1. Let Mn and Mn be two real-valued stochastic processes
indexed by a metric space (Θ, d). Consider a sequence of subsets Θn ⊂ Θ
and the following assumptions:

(a) For each n ≥ 1, there exists τn ∈ Θ such that, for all ε > 0,

inf
n≥1

inf{Mn(θ)−Mn(τn) : θ ∈ Θ, d(θ, τn) ≥ ε} > 0.

(b) For each n ≥ 1, there exists τ∗n ∈ Θn such that Mn(τ∗n) = infθ∈Θn Mn(θ).
Moreover, Mn(τ∗n)−Mn(τn) = oP (1).

(c) It holds that ‖Mn −Mn‖Θn = oP (1).

Under (a), (b), and (c), if θn ∈ Θn satisfies Mn(θn)−Mn(τ∗n) ≤ 0 for all
n ≥ 1, then d(θn, τn) = oP (1).

The corollary below will prove useful.

Lemma B.2. Let Zn and Zn be two real-valued stochastic processes in-
dexed by a metric space (Θ, d). Consider the following assumptions:

(d) For each n ≥ 1, there exists τn ∈ Θ such that Zn(τn) = 0 and, for all
ε > 0,

inf
n≥1

inf{|Zn(θ)| : θ ∈ Θ, d(θ, τn) ≥ ε} > 0.

(e) It holds that ‖Zn − Zn‖Θ = oP (1).

Under (d) and (e), if θn ∈ Θ satisfies Zn(θn) = 0 for all n ≥ 1, then
d(θn, τn) = oP (1).

Proof of Lemma B.1. Set n ≥ 1. By (a), it holds that

0 ≤ Mn(θn)−Mn(tn)

= (Mn(θn)−Mn(θn)) + (Mn(θn)−Mn(t∗n))

+ (Mn(t∗n)−Mn(t∗n)) + (Mn(t∗n)−Mn(tn)) .

The above first and third RHS terms are both upper-bounded by ‖Mn −
Mn‖Θn . The second RHS term is non-positive by definition of θn. The fourth
RHS terms is oP (1) by (b). Thus, it actually holds that 0 ≤ Mn(θn) −
Mn(tn) ≤ 2‖Mn −Mn‖Θn + oP (1) = oP (1) by (c).

Set ε > 0. By (a), there exists a positive random variable ∆ which is
independent of n and such that d(θn, tn) ≥ ε implies Mn(θn)−Mn(tn) ≥ ∆
or, equivalently, ∆−1[Mn(θn) −Mn(tn)] ≥ 1. Now, by Slutsky’s lemma [6,
Lemma 2.8], Mn(θn) −Mn(tn) = oP (1) entails ∆−1[Mn(θn) −Mn(tn)] =
oP (1). Therefore, we conclude that d(θn, tn) = oP (1) too.
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Proof of Lemma B.2. For all n ≥ 1 and θ ∈ Θ, define Θn = Θ, t∗n = tn,
Mn(θ) = |Zn(θ)| and Mn(θ) = |Zn(θ)|. We note that (a) in Lemma B.1
follows from (d), that (b) in Lemma B.1 trivially holds, and finally that (c)
in Lemma B.1 is a consequence of (e) and the reverse triangle inequality.
Now, for each n ≥ 1, Zn(θn) = 0 rewrites Mn(θn)−Mn(t∗n) ≤ 0. Applying
Lemma B.1 yields the result.

B.2. Maximal inequalities and convergence of empirical pro-
cesses. The following two results are the cornerstones of our theoretical
study.

Lemma B.3 (maximal inequality). Let F be a separable class of mea-
surable, real-valued functions, with envelope function F . Set n ≥ 1. It holds
that

(B.1) E
(√
n‖Pn − PQ0,gn‖F

)
. JF (1,F)× ‖F‖2,P

Q0,g
ref
.

Lemma B.4 (convergence of empirical processes indexed by estimated
functions). For each n ≥ 1, let Fn = {fθ,η : θ ∈ Θ, η ∈ Tn} be a sepa-
rable class of measurable, real-valued functions, with envelope function Fn.
Suppose the following holds:

(a) The sequence {Fn}n≥1 satisfies the Lindeberg condition: ‖Fn‖2,P
Q0,g

ref
=

O(1) and, for every δ > 0, ‖Fn1{Fn > δ
√
n}‖2,P

Q0,g
ref

= o(1).

(b) If δn = o(1), then it holds that JFn(δn,Fn) = o(1).

If ηn ∈ Tn is such that supθ∈Θ ‖fθ,ηn − fθ,η0‖2,PQ0,g
ref

= oP (1) for some

η0 ∈ ∩p≥1 ∪n≥p Tn, then supθ∈Θ |
√
n(Pn − PQ0,gn)(fθ,ηn − fθ,η0)| = oP (1).

The proof of Lemma B.4 notably relies on the lemma below. Its proof, a
straightforward adaptation of that of [8, Lemma 12], is omitted.

Lemma B.5. For each n ≥ 1, let Fn be a class of measurable, real-
valued functions with envelope function Fn such that δn = o(1) implies
JFn(δn,Fn) = o(1). Then (i) JFn(δ,Fn) = O(1) for every δ > 0, and (ii) for
every ε > 0, there exist δ > 0 and n1 ≥ 1 such that JFn(δ,Fn) ≤ ε for all
n ≥ n1.

Proof of Lemmas B.3 and B.4. The proofs of Lemmas B.3 and B.4
are best presented jointly.

Let us prove (B.1) from Lemma B.3 in three steps.
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Step one: decoupling. By [2, Proposition 6.1.5 and Remark 6.1.6], it is
possible to enlarge the probability space and to define three sequences of
random variables {εn}n≥1, {(O[n, Z[n)}n≥1, {(O\n, Z\n)}n≥1 and a σ-field G
such that

• {εn}n≥1 is a sequence of independent Rademacher random variables,
a sequence that is moreover independent of the three {(On, Zn)}n≥1,

{(O[n, Z[n)}n≥1, {(O\n, Z\n)}n≥1;

• the distributions of (O[1, Z
[
1) and (O\1, Z

\
1) coincide with that of (O1, Z1)

and, for every n ≥ 2, the conditional distributions of (O[n, Z
[
n) and

(O\n, Z
\
n) given G coincide with that of (On, Zn) given (O1, Z1), . . . ,

(On−1, Zn−1);

• conditionally on G, the two sequences {(O[n, Z[n)}n≥1, {(O\n, Z\n)}n≥1

are independent and each with mutually independent elements.

The new sequences {(O[n, Z[n)}n≥1 and {(O\n, Z\n)}n≥1 are said “decoupled
sequences” to {(On, Zn)}n≥1.

We denote EG the conditional expectation given G and E[G the conditional

expectation given G and {(O[n, Z[n)}n≥1. We also characterize P [n, P [Q0,gn
and

P 0[
n by setting, for each f : O × [0, 1] → R, P [nf = n−1

∑n
i=1 f(O[i , Z

[
i ),

P [Q0,gn
f = n−1

∑n
i=1EG [f(O[i , Z

[
i )], P

0[
n f = n−1

∑n
i=1 εif(O[i , Z

[
i ).

Step two: symmetrizing. Let Φ be a non-decreasing, convex function map-
ping R+ to R. Set n ≥ 1. By construction of the decoupled sequences, it holds
that E[Φ(n‖Pn − PQ0,gn‖F )] = E(EG [Φ(n‖P [n − P [Q0,gn

‖F )]). We now focus

on EG [Φ(n‖P [n − P [Q0,gn
‖F )].

Note that

n‖P [n − P [Q0,gn‖F =

∥∥∥∥∥
n∑
i=1

f(O[i , Z
[
i )− EG(f(O\i , Z

\
i ))

∥∥∥∥∥
F

=

∥∥∥∥∥
n∑
i=1

f(O[i , Z
[
i )− E[G(f(O\i , Z

\
i ))

∥∥∥∥∥
F

≤ E[G

[∥∥∥∥∥
n∑
i=1

f(O[i , Z
[
i )− f(O\i , Z

\
i )

∥∥∥∥∥
F

]
,

so that Jensen’s inequality yields

Φ
(
n‖P [n − P [Q0,gn‖F

)
≤ E[G

[
Φ

(∥∥∥∥∥
n∑
i=1

f(O[i , Z
[
i )− f(O\i , Z

\
i )

∥∥∥∥∥
F

)]
.
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By taking outer (conditional) expectation, we obtain
(B.2)

EG

[
Φ
(
n‖P [n − P [Q0,gn‖F

)]
≤ EG

[
Φ

(∥∥∥∥∥
n∑
i=1

f(O[i , Z
[
i )− f(O\i , Z

\
i )

∥∥∥∥∥
F

)]
.

Observe now that, for every n-tuple (e1, . . . , en) ∈ {−1, 1}n,

EG

[
Φ

(∥∥∥∥∥
n∑
i=1

f(O[i , Z
[
i )− f(O\i , Z

\
i )

∥∥∥∥∥
F

)]

= EG

[
Φ

(∥∥∥∥∥
n∑
i=1

ei(f(O[i , Z
[
i )− f(O\i , Z

\
i ))

∥∥∥∥∥
F

)]

since, for each 1 ≤ i ≤ n, (O[i , Z
[
i ) and (O\i , Z

\
i ) are independent and equal

in law (conditional on G). Consequently, (B.2) yields

(B.3) EG

[
Φ
(
n‖P [n − P [Q0,gn‖F

)]
≤ EG

[
Φ

(∥∥∥∥∥
n∑
i=1

εi(f(O[i , Z
[
i )− f(O\i , Z

\
i ))

∥∥∥∥∥
F

)]
,

where the expectation EG to the right now also concerns the (condition-
ally and unconditionally on G) independent (ε1, . . . , εn). By the triangle
inequality and convexity of Φ, we see that the RHS expression of (B.3) is
itself upper-bounded by

1

2
EG

[
Φ

(
2

∥∥∥∥∥
n∑
i=1

εif(O[i , Z
[
i )

∥∥∥∥∥
F

)]
+

1

2
EG

[
Φ

(
2

∥∥∥∥∥
n∑
i=1

εif(O\i , Z
\
i )

∥∥∥∥∥
F

)]

= EG

[
Φ

(
2

∥∥∥∥∥
n∑
i=1

εif(O[i , Z
[
i )

∥∥∥∥∥
F

)]
,

hence

EG

[
Φ
(
n‖P [n − P [Q0,gn‖F

)]
≤ EG

[
Φ

(
2

∥∥∥∥∥
n∑
i=1

εif(O[i , Z
[
i )

∥∥∥∥∥
F

)]
.

In conclusion, we derive the symmetrization inequality

(B.4) E [Φ (n‖Pn − PQ0,gn‖F )] ≤ E[Φ(2n‖P 0[
n ‖F )].
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Step three: chaining. Taking Φ given by Φ(x) = x (all x ≥ 0) in (B.4)
readily yields

(B.5) E
(√
n‖Pn − PQ0,gn‖F

)
≤ 2E(

√
n‖P 0[

n ‖F ).

Set now Φ(x) = exp(x2)−1 (all x ≥ 0) and let ‖ ·‖Φ be the corresponding
Φ-Orlicz norm [7, page 95]. Conditionally on (O[1, Z

[
1), . . . , (O[n, Z

[
n), the pro-

cess
√
nP 0[

n is sub-Gaussian for the L2(P [n)-seminorm ‖ · ‖[2,n by Hoeffding’s

inequality [7, Lemma 2.2.7]. The number s[n = supf∈F ‖f‖[2,n upper-bounds

the radius of F ∪{0} wrt ‖ ·‖[2,n. Thus, by [7, Theorem 2.2.4] (a maximal in-
equality whose proof essentially relies on a chaining argument) and a change
of variable, it holds that

‖
√
nP 0[

n ‖Φ .
∫ s[n

0

√
1 + logN(ε,F , L2(P [n))dε

≤ ‖F‖[2,n
∫ s[n/‖F‖[2,n

0

√
1 + logN(ε‖F‖[2,n,F , L2(P [n))dε.

By definition of the uniform entropy integral, we therefore obtain

‖
√
nP 0[

n ‖Φ . ‖F‖[2,nJFn(s[n/‖F‖[2,n,F),

a result which holds conditionally on (O[1, Z
[
1), . . . , (O[n, Z

[
n). Finally, we take

the expectation wrt to (O[1, Z
[
1), . . . , (O[n, Z

[
n) and note that (a) s[n ≤ ‖F‖[2,n,

(b) E(‖F‖[2,n) . ‖F‖2,P
Q0,g

ref
. In view of (B.5) this does yield

E
(√
n‖Pn − PQ0,gn‖F

)
= E

(√
n‖P [n − P [Q0,gn‖F

)
. E

(
‖F‖[2,n × JFn(s[n/‖F‖[2,n,F)

)
(B.6)

≤ JFn(1,F)× ‖F‖2,P
Q0,g

ref
,

which completes the proof of (B.1).
We now show Lemma B.4. The proof follows closely that of [1, Part III,

Theorem 6.16]. It has four steps.
Step one: preliminary. Introduce the classes F̃0

n (random) and F0
n (deter-

ministic) given by

F̃0
n ≡ {fθ,ηn − fθ,η0 : θ ∈ Θ} ⊂ F0

n ≡ {fθ,η − fθ,η0 : θ ∈ Θ, η ∈ Tn}.

Lemma B.4 states that
√
n‖Pn − PQ0,gn‖F̃0

n
= oP (1).
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For an arbitrarily fixed δ > 0, define

T 0
n(δ) ≡

{
η ∈ Tn : sup

θ∈Θ
‖fθ,η − fθ,η0‖22,PQ0,g

ref
≤ δ2

}
,

F0
n(δ) ≡ {fθ,η − fθ,η0 : θ ∈ Θ, η ∈ T 0

n(δ)} ⊂ F0
n,

F0
n(δ)2 ≡ {h2 : h ∈ F0

n(δ)}, and

s[n(δ) ≡
suph∈F0

n(δ) ‖h‖[2,n
‖1 + 2Fn‖[2,n

=
‖P [n‖F0

n(δ)2

‖1 + 2Fn‖[2,n
.

The classes F̃0
n, F0

n(δ) and F0
n admit Hn ≡ 1 + 2Fn as an envelope function.

Because its definition involves P [n, s[n(δ) is random. Moreover, ‖Hn‖[2,n ≥ 1

and suph∈F0
n(δ) ‖h‖[2,n ≤ ‖2Fn‖[2,n yield that

(B.7) s[n(δ) ≤ min

(
1, sup
h∈F0

n(δ)

‖h‖[2,n

)
= min

(
1, ‖P [n‖F0

n(δ)2

)
.

By (B.6) and the Cauchy-Schwarz inequality, we have

(B.8)
[
E
(√
n‖Pn − PQ0,gn‖F0

n(δ)

)]2
.
[
E
(
‖Hn‖[2,n × JHn(s[n(δ),F0

n(δ))
)]2

≤ E
(
‖Hn‖[22,n

)
× E

(
JHn(s[n(δ),F0

n(δ))2
)
.

Step two: studying s[n(δ). We now show that there exists an integer n1(δ)
such that E(s[n(δ)) . min(1, δ2) for all n ≥ n1(δ). The proof is based on
(B.7) and the decomposition F0

n(δ)2 = F0
n,1(δ)2 ∪ F0

n,2(δ)2 for

F0
n,1(δ)2 ≡

{
h21{2Fn ≤ ρ

√
n/2} : h ∈ F0

n(δ)
}
,

F0
n,2(δ)2 ≡

{
h21{2Fn > ρ

√
n/2} : h ∈ F0

n(δ)
}

where the constant ρ > 0 will be determined later.
Obviously, ρ

√
n/2 × 2Fn = ρ

√
nFn is an envelope function for F0

n,1(δ)2.
By (B.6), we thus have

(B.9) E
(√

n‖P [n − P [Q0,gn‖F0
n,1(δ)2

)
. Jρ

√
nFn(1,F0

n,1(δ)2)× ‖ρ
√
nFn‖2,P

Q0,g
ref
.
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But Jρ
√
nFn(1,F0

n,1(δ)2) easily compares to JFn(1,Fn). Indeed, whichever

are ε > 0, h, h′ ∈ F0
n(δ), and m a discrete probability measure such that

0 < mFn, it holds that

m(h2 − h′2)21{2Fn ≤ ρ
√
n/2} ≤ (4Fn)2m(h− h′)2 ≤ (ρ

√
n)2m(h− h′)2,

hence
N(ε‖ρ

√
nFn‖m,2,F0

n,1(δ)2) ≤ N(ε‖Fn‖m,2,Fn),

from which we deduce that Jρ
√
nFn(1,F0

n,1(δ)2) ≤ JFn(1,Fn). This bound
and (B.9) yield

(B.10) E
(
‖P [n − P [Q0,gn‖F0

n,1(δ)2

)
. ρJFn(1,Fn)× ‖Fn‖2,P

Q0,g
ref
.

Furthermore, because (i) 2Fn is an envelope function for F0
n,2(δ)2 and (ii)

the design gn attached to the sequence {(O[n, Z[n)}n≥1 is bounded away from
0 and 1, it holds that

E
(
‖P [n − P [Q0,gn‖F0

n,2(δ)2

)
. ρJFn(1,Fn)× ‖Fn1{Fn > ρ

√
n/2}‖2,P

Q0,g
ref
.

Since F0
n(δ)2 is the union of F0

n,1(δ)2 and F0
n,2(δ)2, the previous inequality

combined with (B.10) then yields

E
(
‖P [n − P [Q0,gn‖F0

n(δ)2

)
. ρJFn(1,Fn)× ‖Fn‖2,P

Q0,g
ref

+ ρJFn(1,Fn)× ‖Fn1{Fn > ρ
√
n/2}‖2,P

Q0,g
ref
.

By (a) in Lemma B.4, it holds that ‖Fn‖2,P
Q0,g

ref
= O(1) and ‖Fn1{Fn >

ρ
√
n/2}‖2,P

Q0,g
ref

= o(1). By Lemma B.5, JFn(1,Fn) = O(1). Therefore, it

is possible to choose ρ > 0 and find n1(δ) ≥ 1 such that, for all n ≥ n1(δ),

(B.11) E
(
‖P [n − P [Q0,gn‖F0

n(δ)2

)
≤ δ2.

Now, the definition of F0
n(δ) and the above remark (ii) about the design

gn yield the additional inequality, valid for all sample size:

(B.12) E
(
‖P [Q0,gn‖F0

n(δ)2

)
. δ2.

By the triangle inequality, (B.7), (B.11) and (B.12) imply

E(s[n(δ)) ≤ min
(

1, E
(
‖P [n‖F0

n(δ)2

))
. min(1, δ2)
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for all n ≥ n1(δ). Markov’s inequality then yields that, for all ξ > 0 and
n ≥ n1(δ),

(B.13) P
(
s[n(δ) ≥ ξ

)
≤ ξ−1 min(1, δ2).

This completes the study of s[n(δ).
Step three: fine-tuning. Set arbitrarily α, ε > 0. Note that the above re-

mark (ii) about the design gn and assumption (a) in Lemma B.4 imply the
existence of a constant C1 > 0 such that the following bounds hold on the
leftmost factor of the RHS expression in (B.8):

(B.14) E
(
‖Hn‖[22,n

)
. ‖Fn‖22,P

Q0,g
ref
≤ C2

1 .

By assumption (b) in Lemma B.4 and Lemma B.5, there exist 0 < ξ ≤ 1,
C2 > 0 and n2 ≥ 1 such that JHn(ξ,Fn) ≤ αε/C1 and JHn(1,Fn)2 ≤ C2

2 for
all n ≥ n2. Let δ0 > 0 be such that δ0 ≤ αε

√
3ξ/C1C2. By assumption on

ηn in Lemma B.4, we know that there exists n3(δ0) ≥ 1 such that P (ηn 6∈
T 0
n(δ0)) ≤ ε for all n ≥ n3(δ0).

Step four: wrapping up. Let n be larger than max(n1(δ0), n2, n3(δ0)). It
holds that

A ≡ P
(

sup
θ∈Θ
|
√
n(Pn − PQ0,gn)(fθ,ηn − fθ,η0)| ≥ α

)
= P

(√
n‖Pn − PQ0,gn‖F̃0

n
≥ α

)
≤ P

(
ηn 6∈ T 0

n(δ0)
)

+ P
(
ηn ∈ T 0

n(δ0),
√
n‖Pn − PQ0,gn‖F̃0

n
≥ α

)
≤ ε+ P

(√
n‖Pn − PQ0,gn‖F0

n(δ0) ≥ α
)
.

By Markov’s inequality, (B.8), (B.14) and (B.13), we obtain the inequalities

A ≤ ε+ α−1E
(
‖Hn‖[22,n

)1/2
× E

(
JHn(s[n(δ),F0

n(δ))2
)1/2

≤ ε+ α−1C1 ×
(
P (s[n(δ0) ≥ ξ)× JHn(1,Fn)2 + JHn(ξ,Fn)2

)1/2

≤ ε+ α−1C1 ×
(
ξ−1 min(1, δ2

0)× C2
2 + (C−1

1 αε)2
)
≤ 3ε.

Since α and ε were arbitrarily chosen, this completes the proof of Lemma B.4.

APPENDIX C: PATHWISE DIFFERENTIABILITY

The next two lemmas are summaries of results stated and shown in [3, 4].
We state them for the sake of completeness.
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Lemma C.1. Set ρ ∈ R, a known TR. Let Ψρ :M→ [0, 1] be given by

(C.1) Ψρ(PQ,g) ≡ EQ (QY (ρ(W ),W )) .

The mapping Ψρ : M → [0, 1] is pathwise differentiable at every PQ,g ∈
M with respect to (wrt) the maximal tangent space. Its efficient influence
curve at PQ,g is Dρ(Q, g) which satisfies Dρ(Q, g)(O) = DW,ρ(Q, g)(W ) +
DY,ρ(Q, g)(O) with

DW,ρ(Q)(W ) ≡ QY (ρ(W ),W )−Ψρ(PQ,g),

DY,ρ(Q, g)(O) ≡ 1{A = ρ(W )}
g(A|W )

(Y −QY (A,W )) .

The variance VarPQ,g Dρ(Q, g)(O) is a Cramér-Rao lower bound for the
asymptotic variance of any regular and asymptotically linear estimator of
Ψρ(PQ,g) when sampling independently from PQ,g.

In addition, if g = g′, then EQ,g(Dρ(Q
′, g′)(O)) = 0 implies Ψρ(PQ′,g′) =

Ψρ(PQ,g).

The notation DW,ρ(Q) conveys the notion that the first component of
Dρ(Q, g) does not depend on g. This is true because Ψρ(PQ,g) does not
depend on g either.

Lemma C.2. The mapping Ψ : M → [0, 1] is pathwise differentiable
at every PQ,g ∈ M wrt the maximal tangent space. Its efficient influence
curve at PQ,g is D(Q, g) which satisfies D(Q, g)(O) = DW (Q, g)(W ) +
DY (Q, g)(O) with

DW (Q)(W ) ≡ QY (r(QY )(W ),W )−Ψ(PQ,g),

DY (Q, g)(O) ≡ 1{A = r(QY )(W )}
g(A|W )

(Y −QY (A,W )) .

The variance VarPQ,g D(Q, g)(O) is a Cramér-Rao lower bound for the
asymptotic variance of any regular and asymptotically linear estimator of
Ψ(PQ,g) when sampling independently from PQ,g.

In addition, if g = g′, then EQ,g(D(Q′, g′)(O)) = 0 implies

Ψ(PQ′,g′) = EQ
(
QY (r(Q′Y )(W ),W )

)
.

In particular, if r(QY ) = r(Q′Y ) and g = g′, then EQ,g(D(PQ′,g′)(O)) = 0
implies Ψ(PQ′,g′) = Ψ(PQ,g).
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APPENDIX D: NOTATION INDEX

This notation index covers the entirety of the main article and gives the
bare minimum to skim through the pages of the supplemental article.



SUPPLEMENTAL ARTICLE 39

≡ equal, by definition, to

‖ · ‖∞ supremum norm

‖ · ‖2,µ L2(µ)-norm

‖ · ‖2,P
Q0,g

ref
L2(PQ0,gref )-norm

‖f‖p seminorm of f :W → R given by

‖f‖pp ≡ EQ0(|qY,0(W )| × |f(W )|p)
‖Pn − PQ0,gn‖F the supremum of |(Pn − PQ0,gn)f | in f ∈ F , with F a

separable set of measurable functions over O
β, βn,0, β0, βn see QY,β, QY,βn,0 , QY,β0 , QY,βn

blip function generically denoted qY , a function describing the ex-
pected difference in reward under a “blip” in treatment,
conditional on baseline covariates

Cn counterfactual cumulative pseudo-regret at sample size n,
see (5.5)

∆(gn, g0) a measure of discrepancy between gn and g0, see (3.5)

∆(rn, r0) a measure of discrepancy between rn and r0, see (3.3)

d∗W,0, d∗Y,0 two components of the influence function in the asymp-
totic linear expansion (4.15) of ψ?n − ψrn,0, see (4.9) and
(4.10)

d∗W,n, d∗Y,n empirical counterparts to d∗W,0 and d∗Y,0, see (4.12) and
(4.13)

Dr0(Q?0, g0) efficient influence curve of Ψr0 at PQ?0,g0 , see Lemma C.1

ε0(ρ) optimal fluctuation parameter along

{QY,β0,g0,ρ(ε) : ε ∈ E}, see (4.3) and A3

εn empirically optimal fluctuation parameter along
{QY,βn,gn,rn(ε) : ε ∈ E}, see (2.15) and (2.16)

En empirical cumulative pseudo-regret at sample size n, see
(5.2)

F , Fn envelope functions

γ1, γ2 positive constants involved in the statement of A5, A5*
and A5**

g generic stochastic TR such that, under g, the conditional
distribution of A given W is the Bernoulli law with pa-
rameter g(1|W ) = 1− g(0|W ) ∈ (0, 1)
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gb balanced stochastic TR, given by gb(1|W ) = gb(0|W ) =
1/2

gref stochastic TR bounded away from 0 and 1 serving as a
reference

g0 stochastic TR defined as an approximation to r0, see (3.1)

gi, gn data-adaptive stochastic TRs used to assign treatment to
the ith and nth patients, see (2.11)

gn ordered vector gn ≡ (g1, . . . , gn) of the n first data-
adaptive stochastic TRs

Gn non-decreasing, cn-Lipschitz approximation to x 7→
1{x ≥ 0} on [−1, 1] taking values in [tn, 1 − tn] ⊂ [0, 1]
and such that tn ↓ t∞ > 0 and cn ↑ c∞ <∞ see (2.5)

G semiparametric collection of all gs

G1,n, G1 the subsets of G defined as G1,n ≡ {Gn(qY ) : QY ∈ Q1,n}
and G1 ≡ ∪n≥1G1,n

Hρ(g)(O) clever covariate associated with TR ρ ∈ R and stochastic
TR g ∈ G, see (2.14): Hρ(g)(O) ≡ 1{A=ρ(W )}

g(A|W ) ; it is used
to fluctuate an initial estimator of QY,0

JF (δ,F) the uniform entropy integral at δ of F wrt an envelope

function F , i.e.,
∫ δ

0

√
log supµN(ε‖F‖2,µ,F , ‖ · ‖2,µ)dε,

with a supremum taken over all probability measures µ
for which ‖F‖2,µ > 0, a measure of complexity of F

L, Lkl, Lls loss functions for the estimation of QY,0, where the quasi
negative-log-likelihood and least-square loss functions Lkl

and Lls are given by (2.6) and (2.7)

L(Q1,n) given a loss function L, the set {L(QY,β) : QY,β ∈ Q1,n}
M semiparametric model M≡ {PQ,g : Q ∈ Q, g ∈ G}
N(δ,F , ‖ · ‖2,µ) δ-covering number of F wrt ‖ · ‖2,µ
O bounded space O ≡ W × {0, 1} × (0, 1) where a generic

observed data-structure takes its values

On ordered vector On ≡ (O1, . . . , On) of the n first observed
data-structures Oi ≡ (Wi, Ai, Yi)

Pn the empirical distribution of O(n)

Pnf shorthand notation for n−1
∑n

i=1 f(Oi, Zi)
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PQ,g distribution of O ≡ (W,A, Y ) obtained by drawing W
from its marginal distribution encoded in Q, then A from
the Bernoulli distribution with parameter g(1|W ), then
Y from its conditional distribution given (A,W ) encoded
in Q

PQ,gf shorthand notation for EQ,g(f(O,Z))

PQ0,gi same as PQ,g with Q = Q0 and g ≡ gi, the conditional
distribution of Oi given O(i− 1)

PQ0,gif shorthand notation for EQO,gi [f(Oi, Zi)|O(i− 1)]

PQ0,gnf shorthand notation for n−1
∑n

i=1 PQ0,gif

ψ0 mean reward of the optimal TR under Q0, see (2.3)

ψrn,0 a data-adaptive parameter, the mean reward of empirical
TR rn under Q0, see (4.4)

ψ∗n targeted minimum loss estimator (TMLE) of ψrn,0 at
sample size n, see (2.17)

Ψ mapping from M to [0, 1] given by (2.4), such that
Ψ(PQ,g) is the mean reward of the optimal TR under Q

Ψr0 mapping from M to [0, 1] given by (4.16), such that
Ψr0(PQ,g) is the mean reward of TR r0 under Q (note
that r0 may differ from r(QY ))

Q, Q0 generic and true infinite-dimensional parameters fully de-
scribing the marginal distribution of W and conditional
distribution of Y given A,W

Q?0 infinite-dimensional parameter such that W has the same
marginal distribution under Q?0 as under Q0 and the con-
ditional distribution of Y given A,W under Q0 is Q?Y,0

QY , QY,0 (generic and true) conditional expectations of Y given
A,W under Q and Q0

Q?Y,0 shorthand notation for QY,β0,g0,r0(ε0(r0)), a conditional
expectation of Y given A,W defined as the optimal fluc-
tuation of QY,β0,g0 in the direction of Hr0(g0), see (4.8);
such that EQ0(Q?Y,0(r0(W ),W )) equals ψ0

QY,β generic element of Q1

QY,βn,0 , QY,β0 projections of QY,0 onto Q1,n and Q1, see A2
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QY,βi , QY,βn estimators of QY,0 defined as solutions to the minimiza-
tion of the weighted empirical risk over Q1,i and Q1,n at
sample sizes i and n, see (2.8)

QY,β,g,ρ(ε) generic fluctuation, indexed by ε, of QY,β in the direction
of Hρ(g), see (2.15):

QY,β,g,ρ(ε) ≡ expit (logit(QY,β) + εHρ(g))

= expit
(

logit(QY,β) + ε1{A=ρ(W )}
g(A|W )

)
QY,β0,g0,ρ(ε) generic fluctuation, indexed by ε, of QY,β0 in the direction

of Hρ(g0), see (4.2)

QY,βn,gn,rn(ε) fluctuation, indexed by ε, of the initial estimator QY,βn
of QY,0 in the direction of Hrn(gn), see (2.15)

Q?Y,βn,gn,rn targeted, empirically optimal fluctuation QY,βn,gn,rn(εn)
of the initial estimator QY,βn of QY,0 in the direction of
Hrn(gn)

Q?Y,ζn,rn shorthand notation for Q?Y,βn,gn,rn (used in the supple-
mentary article only)

QY,ζ,ρ(ε) shorthand notation for QY,β,g,ρ(ε), see (A.1) (used in the
supplementary article only)

QY,ζ,ρ(ε) ◦ ρ shorthand notation defined in (A.2) (used in the supple-
mentary article only)

qY , qY,0 (generic and true) blip functions under Q and Q0, given
by qY (W ) ≡ QY (1,W ) − QY (0,W ) and qY,0(W ) ≡
QY,0(1,W )−QY,0(0,W )

qY,β blip function associated with QY,β, given by qY,β(W ) ≡
QY,β(1,W )−QY,β(0,W )

qY,βi , qY,βn estimators of qY,0 defined as the blip functions associated
with QY,βi , QY,βn , see (2.9)

Q, QY semiparametric collections of all Qs and all QY s

Q1,n, Q1 nth working model Q1,n ≡ {QY,β : β ∈ Bn} ⊂ QY and
their union Q1 ≡ ∪n≥1Q1,n

r(QY ) optimal TR under Q, see (2.2)

r(QY,0) or r0 optimal TR under Q0, given by r(QY,0)(W ) ≡ r0(W ) ≡
1{qY,0(W ) ≥ 0}

ri, rn estimators of r0 defined as the TRs associated with qY,βi
and qY,βn at sample sizes i and n, see (2.10)
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ρ generic TR ρ ∈ R
R set of all TRs

r(Q1,n) the subset of R defined as

r(Q1,n) ≡ {r(QY ) : QY ∈ Q1,n}
Σ0, Σn asymptotic variance of

√
n(ψ?n − ψrn,0) and an explicit

estimator used to derive confidence intervals for ψrn,0 and
ψ0, see (4.11) and (4.14)

ΣE
0 , ΣE

n asymptotic variance of
√
n(ψ?n+En−n−1

∑n
i=1 Yi) and an

explicit estimator used to derive lower confidence bounds
for En and Cn, see (5.3) and (5.4)

stochastic TR individualized treatment strategy in which treatment as-
signment for a patient is determined randomly from a
conditional distribution given her measured baseline co-
variates; generically denoted g

tn fine-tune parameter used in the definition of Gn

treatment rule individualized treatment strategy in which treatment as-
signment for a patient is determined deterministically
based on her measured baseline covariates; generically
denoted ρ, a function of baseline covariates prescribing
deterministically which treatment to assign; can be seen
as a degenerate stochastic TR

TR abbreviation of “treatment rule”

ξn fine-tune parameter used in the definition of Gn

ζ, ζ0, ζn shorthand notation used for a generic indexing parameter
ζ ≡ (β, g), ζ0 ≡ (β0, g0) and ζn ≡ (βn, gn) (used in the
supplemental article only)

Z given a known g ∈ G and O drawn from PQ0,g, Z ≡
g(A|W ) is a weight associated with O; since Z is deter-
ministically determined given g and O, we can augment
O with Z, i.e., substitute (O,Z) for O and still say that
(O,Z) is drawn from PQ0,g

Zi, Zn Zi ≡ gi(Ai|Wi) and Zn ≡ gn(An|Wn) are weights asso-
ciated with Oi and On; we can substitute (Oi, Zi) and
(On, Zn) for Oi and On and still say that (Oi, Zi) and
(On, Zn) are drawn from PQ0,gi and PQ0,gi conditionally
on O(i− 1) and O(n− 1)
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APPENDIX E: A TABLE AND A FIGURE SUMMARIZING THE
SIMULATION STUDY
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Figure 2. Illustrating the data-adaptive inference of the optimal treatment
rule, its mean reward and the related pseudo-regrets through the representa-
tion of the conditional mean QY,0, blip function qY,0 and their estimators (see
also Figure 1). Top left plot. The solid curves represent U 7→ QY,0(1, (U, v)) for v = 1 (in
blue, minimum reached at U = 1), v = 2 (in pink, minimum reached at U = 1/2) and v = 3
(in green, minimum reached at U = 1/3). The dashed curves represent U 7→ QY,0(0, (U, v))
for v = 1 (in blue, maximum reached at U = 1/6), v = 2 (in pink, maximum reached at
U = 1/3) and v = 3 (in green, minimum reached at U = 1/2). Bottom left plot. The
curves represent U 7→ qY,0(U, v) for v = 1 (in blue, minimum reached close to 1/9), v = 2
(in pink, minimum reached close to 1/2) and v = 3 (in green, minimum reached close to
1/3). Right plots. Counterparts to the left plots, where QY,0 and qY,0 are replaced with
QY,βn and qY,βn for n = 1000, the final sample size.
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