
A Comparative Study of Solvers in Amazons Endgames

Julien Kloetzer, Hiroyuki Iida, and Bruno Bouzy

Abstract— The game of Amazons is a fairly young member of
the class of territory-games. The best Amazons programs play
now at a high level, but can still be defeated by humans expert of
the game. Our focus here is on the solving of endgames, with
the goal of improving the general playing level of Amazons
programs. Our comparative study of four solvers, DFPN,
WPNS, Alpha/Beta and Monte-Carlo Tree-Search, shows that
usual game-playing methods used for Amazons, namely Alpha-
Beta and Monte-Carlo Tree-Search, are best suited for this task.
This result also emphasizes the need of an evaluation function
for the game of Amazons.

I. INTRODUCTION

Recently, focus in game-programming has derived a lot
onto territory-based games (mostly the game of Go, but also
the game of the Amazons) and Monte-Carlo methods, and
many very strong programs have emerged, achieving results
unimaginable some years ago [1]. But these works often
focus on making a very strong game-program able to play
well during a whole game; few worked on improving some
specific parts of the game [2].

However, for the purpose of building a strong strategy
game program, several tasks are key to increase its level. It is
usually not possible to build a strong program that just ”plays
well” in the whole game: plays well in the opening, plays
optimally in the endgame, these tasks are very important
points to consider to beat top human players.

In this paper, we study endgame solvings of one territory-
based games, the game of Amazons. Traditional solvers
(DFPN, Alpha/Beta) are considered, as well as some newer
techniques such as Monte-Carlo and WPNS. The main goal
still being to build a strong game-playing engine, we focus
here on realistic endgames and solving in limited time.

We present in section II the game of the Amazons, as well
as the different solving techniques considered in this paper.
Section III presents a way of building a problem database and
deals with the problem of comparing different sort of solvers,
with results being presented and discussed in section IV. The
conclusion follows in section V.

II. BACKGROUND WORKS

A. The game of the Amazons

The game of Amazons, also called Amazons, is a two-
player deterministic game with perfect information. It was
created in 1988 by Walter Zamkauskas. It is played on a 10×
10 board, each player controlling 4 Amazons, moving like

J. Kloetzer and H. Iida are with the Research Unit for Comput-
ers and Games, JAIST, 1-1 Asahidai, Nomi, Ishikawa 923-1292 Japan,
j.kloetzer,iida@jaist.ac.jp

B. Bouzy is with the CRIP5, Université René Descartes, 45 rue des Saints-
Pères, 75270 Paris Cedex 06 France, bouzy@math-info.univ-paris5.fr

Queens in Chess (any number of squares in any direction).
In turn, players move one of their Amazons, then ”shoot
an arrow” from the landing square of the Amazons, in any
direction, any number of squares away (see figure 1). From
now on, the square on which the arrow lands is blocked:
no Amazons can move over or stop on, as well as further
arrows. Each turn, the number of empty squares of the board
is reduced by one by a shot, and the first player unable to
move loses the game. At this moment, it is usually agreed
that the score of his opponent is the number of moves he
can still make after the pass.

Fig. 1. Classical Amazons starting position with a possible first move and
shot

Fig. 2. An Amazons mid-game position - darkened squares are blocked
squares

The main goal when playing the game is both to reduce the
mobility of the opponent’s Amazons, and to create territories
(see figure 2). To this extent, Amazons is a territory game,
like the game of Go. A second aspect on which the game is
similar with Go is its high complexity: the game is shorter

(maximum 92 plies, usually 60-70), but its branching factor
is very high: there are more than 2000 different moves for
the first player. But, unlike the game of Go, some very strong
game-programs already exist, mostly because it is easier to
design an evaluation function [3].

B. Solvers

Solving game problems has always been a significant part
of the more general goal which is creating good game-
playing programs. This concerns both endgames positions
and local problems and, in a more general class, game-
solving. Computer programs always have an upper hand at
that task over human players because of the mathematical
precision needed for this task; but it nonetheless requires
good algorithms, which can be easily sorted into two classes:

• On the one hand, traditional solving methods, such as
PNS and DFPN [4] used for the solving of AND/OR
trees. These will be later referred as ”solving methods”.

• On the other hand, game playing algorithms, such as
iterative deepening with an evaluation function and
Alpha/Beta, which are not specifically developed to
solve game problems, but can nevertheless be used for
that task. These will be referred later as ”game-playing
methods”.

In the next sections, we will present four of those solvers
(two solving methods and two game-playing methods) used
in the context of this article.

1) Depth-First Proof Number Search: Among these algo-
rithms, one of the most well-known and efficient is Proof-
Number Search, developed in 1994 [5] (PNS). The main
idea of PNS is to make use of Conspiracy Numbers [6], in
the present case proof numbers (pn) and disproof numbers
(dn), to search first nodes whose value is easier to prove or
disprove. The search in PNS is conducted until the value of
the root (its pn and dn) is found by iteratively expanding a
most proving node, i.e. one of the easiest node to prove or
disprove.

DFPN is a fork of PNS developed in 2002 [7] using the
same theory and algorithm. It notably adds two threshold
numbers for each node during the exploration of the tree
to facilitate the search of a most proving node. DFPN is
known to have solved some of the longest Shogi problem
created (like ”Micro Cosmos” [7]), thus accrediting its
performances. The algorithm, being depth-first, is also less
memory-intensive. [4]

2) Weak Proof Number Search: WPNS is another variant
of PNS recently developed [8] whose performances have
been shown slightly better than those of PNS. It has the main
advantage of better handling the presence of Directed Acyclic
Graphs (DAG) in the explored tree. The main difference with
the original algorithm is the replacement of the following
formula used to calculate proof numbers for an AND node
N:

pn(N) =
∑

c=childNode(N)

pn(c)

with this one:

pn(N) = max
c=childNode(N)

pn(c) + |N.unsolvedChilds| − 1

Also, the formula calculating disproof numbers for OR nodes
is replaced in the same way.

The two variations of DFPN and WPNS being independent
of each-other, it is obviously possible to adapt both these
methods to create a Depth-First version of WPNS.

3) The Alpha/Beta method: Despite not being specifically
designed for solvings, game-playing engines based on iter-
ative deepening, an evaluation function and the Alpha/Beta
method [9] can also be used for that task. The latter’s main
purpose is to cut parts of huge game-trees and it is nowadays
universally used in Tree-Search based game playing engines.

4) The Monte-Carlo method: The basic idea of this last
method in game programming is to evaluate positions by an
approximation of, usually, their average percentage of win.
This is achieved by running a huge number of random games
from a given position and by averaging their results, thus
computing the approximation we need. It has been proposed
in 1990 by Bruce Abramson [10].

The Monte-Carlo method has been used in deterministic
games since already 1993 [11], but did not have very good
results for this class of games until 2006, with the creation
of the UCT algorithm [12]. The latter is used to improve the
performances of a Monte-Carlo engine: instead of playing
completely random games, it performs a form of tree-search
near the root of the tree to focus on more promising nodes,
which in turns helps to find the best move from a position.

As for the Alpha/Beta method, despite not being designed
for solving, the Monte-Carlo method can be used to find solu-
tions to game problems. Its main weakness is obviously that
it will return an approximation of an evaluation, while when
solving problems we deal with exact solutions, resulting in
an inability to ”catch” the mathematical precision beneath
that task. But, despite this drawback, this method has already
shown some good results for problem solving [2].

III. METHODOLOGY

When considering Amazons-problem solving, two difficul-
ties spring immediately to mind. At first, being a young and
less played game, the game of Amazons does not have much
theory to support it. More importantly, there is not yet any
good reference or book of problems, like there are Chess
problems, Tsumego or Tsumeshogi books. In addition, since
it takes a great deal of knowledge and time to build ”good”
problems with only one solution, we will most likely cope
with problems allowing multiple solutions.

Second, the game of Amazons usually reach a point
where the board is separated into distinct regions, each one
containing Amazons which can no longer interact with other
Amazons in other regions: we will call these regions sub-
games (see Figure 4: the upper board contains 3 sub-games,
with respectively 1, 3 and 4 Amazons). Knowing the value
of each of those sub-games and using Conway’s theory of
partizan games [13], we can then in turn know the value of

the main game and which sub-game should be played first.
But where the goal of the game is just two-valued (win/lose),
the goal of each of these sub-games is to make the maximum
number of points of them, which means that their goal is
multi-valued. As such, the problems we will cope with will
also be multi-valued. This raises two issues:

• Traditional solving methods such as PNS usually not
used with multiple-valued trees, only two-valued.

• Because they are not designed as solving methods,
algorithms such as Alpha/Beta or Monte-Carlo usually
cannot give the theoretical value of a position.

In the next two sections, we will see first how to build
a correct database of problems for the game of Amazons,
and then consider how we can assess and compare different
solving algorithms in the most fair way possible, having the
last two issues in mind.

A. Building a problem database

Unlike more popular games such as Chess, Checkers,
Shogi or Go and despite some previous work on Amazons
endgames [14], there is not any easily accessible database
of problems for the game of Amazons. Moreover, such
collections of problems are usually written by human experts
of the game and provide interesting problems with a good
quality. Such problems usually have a unique solution (or
few of them). That aspect is important in the field of game-
programming because it allows us to check easily if a
program’s answer is good or not.

For the purpose of this study, we had to build such a
problem database. But we need to define first what kind of
problems we will deal with.

1) Amazons problems: The main part of the game which
can provide us with interesting problems for the game of
Amazons is the endgame. The main difference with other
traditional game is that the goal in Amazons endgames is to
fill (if only one side is involved) or to gain (if both sides are
involved) territory: solving a problem consists in finding out
the two values of the position, for each player moving first
and, in a game-oriented perspective, one of the best moves.

To build this problem database (which is, in fact, a
positions database), we focused on some distinct aspects:

• To help analyzing the strengths or weaknesses of every
assessed method, problems should be of various sizes
and contents.

• Difficulty of problems (mostly in term of size) should
be capped. Not because too difficult problems would be
uninteresting, but because we are dealing with limited
time and with more practical than theoretical situations,
and also because we need to solve the problems before
utilizing them in experiments.

2) Creating the problems: Since creating a problem
database by hand was out of the question, there were
basically two main possible choices to create the problems:

• Use a routine to create positions automatically
• Extract positions from Amazons game records

Fig. 3. Examples of Amazons end-games positions

Since there is no easy way to create a ”position-making”
routine and that we wanted to cope with practical situations,
the second solution was chosen. The procedure used was the
following:

• Fix a set of features for the problems to extract (number
of Amazons, number of empty squares, possibility of
movement of each player...)

• Read game records until a territory containing the
correct set of features is created (see Figure 4)

• Extract the position corresponding to the territory with
the position of the Amazons, and go back to reading

Each position extracted can give birth to two problems,
considering which players plays first. This simple procedure,
provided that we have a various set of game records and a
correct set of features, should allow us to extract various
non-artificial positions and to attain our goal of creating a
good problems database.

B. Assessing the solvers

If we want to compare fairly two different class of solvers,
solving methods and game-playing methods, for the game of
Amazons, some difficulties arise. Among them, the fact that
PNS-based methods are suited to solve two-valued problems
while Amazons problem is multi-valued will be discussed in
the first sub-section. We will then see how to assess correctly
game-playing methods in the second subsection, and finally
how to compare these two classes of solvers in the third one.

1) Handling multi-valued trees with PNS and PNS-based
methods: PNS is usually used for two-valued trees: Yes -
Win, and No - Lose. However, as presented by Allis in his
paper about PNS, it does not mean that the algorithm cannot
handle multi-valued trees. It just takes more time. Basically,
if we want to know if a game can be won by at least N points,

Fig. 4. In search for positions containing 2 white and 2 black Amazons.
After the last move (showed in white), the part on the top left is isolated
from the rest of the board and contains the correct number of Amazons for
each player: it is extracted and saved in the database.

we should consider all final nodes with values strictly inferior
to this result as NO nodes, and all others as YES nodes. On
the other hand, if a position cannot be won, we want to know
by how many points we would lose it, which value we can
get by using the same idea. This leads us to the algorithm
given in Figure 5.

Still, this procedure takes much more time than the only
solving of a two-valued game-tree to find out if it is a win
or a loss for the first player. If we give the same quantity
of time to PNS-based solving methods and to game-playing
methods, the ensuing comparison will not be fair to solving
methods. So, instead of fixing a limit of time for the whole
procedure, we should give it the same quantity of time for
each iteration of the loop. This way, we will assess solving
methods by the maximum score for which they can solve the
position given a certain quantity of time.

Also, we will normally need to explore the game tree
until both players have passed: if one player (P) pass, his
opponent has to play until the end to determine the score of
the game, while player (P) pass until the end. However, this
is not always necessary, since it is possible to stop the search
sometimes as soon as one player has passed. If we want to
know if a position can be won by the First Player (FP) with
a minimum result of (Win of player P, score N), we can stop
searching at the following moments:

• If player P just passed, the search is over: the expected
result cannot be proved. If P was the first player to move
(that is, if P = FP), then the current node is a NO node.
Otherwise, it is a YES node.

• If the opponent of player P just passed for the Nth time,

1 f u n c t i o n g e t V a l u e (p o s i t i o n)
R e s u l t i n i t i a l R e s u l t = (Win by 1 s t p l a y e r , 0

p o i n t) ;
3 i n t m o d i f i e r = +1;

i f (n o t (s o l v e (p o s i t i o n , i n i t i a l R e s u l t)))
5 i n i t i a l R e s u l t = (Win by 2nd p l a y e r , maximum

T h e o r e t i c a l Score o f (p o s i t i o n)) ;
m o d i f i e r = −1;

7 end i f ;
R e s u l t f i n a l R e s u l t ;

9 do
f i n a l R e s u l t = i n i t i a l R e s u l t ;

11 i n i t i a l R e s u l t . s c o r e += m o d i f i e r ;
whi le (s o l v e (p o s i t i o n , i n i t i a l R e s u l t) == t r u e) ;

13 re turn f i n a l R e s u l t ;
end f u n c t i o n

15
f u n c t i o n s o l v e (p o s i t i o n , r e s u l t)

17 / / C o n s i d e r f i n a l nodes wi th v a l u e s t r i c t l y i n f e r i o r
t o r e s u l t a s no , o t h e r s a s yes

/ / Per fo rm a t r a d i t i o n a l two−v a l u e d s e a r c h and
r e t u r n s t h e v a l u e o f t h e r o o t (t r u e o r f a l s e)
o r t imeOut

19 end f u n c t i o n

Fig. 5. Pseudo-code for multi-valued 2-players game solving

the search is over: the result is proved. In this case,
if P = FP, then the current node is a YES node, and
otherwise a NO node.

Because they are based on the same model and have the
same limitations as PNS, the procedure and improvement
presented here can also be used to assess methods such as
DFPN or WPNS.

2) Assessment of game-playing methods: Traditional solv-
ing methods such as PNS are able to return the final value
of the root. Other algorithms such as Alpha/Beta are game
playing methods: they will return an evaluation and/or a
move, but we are usually not sure about how this evaluation
is related to the score; this means that the only exploitable
data we have is the move returned by the algorithms. To be
able to compare game-playing methods between each-other
and with various solving methods, we need to know how
good the move given is compared to an optimal solution.

If we have an information telling us that the move given
by such methods is optimal, then the search is over. But it
can happen that this information is missing. In this case, we
should use a judge program to compute the exact value of
the position resulting from playing the move on the initial
position, and see how this new value compare to the value of
the initial position. It obviously cannot be better: either they
are equal, in which case we know that the method assessed
gave a correct solution; or they are not, in which case we also
know the difference, in terms of a score difference, between
the solution given by the assessed method and an optimal
solution.

3) Making a fair comparison: Following these two pro-
cedures, we can get assessments both for solving methods
and for game-playing methods. However, the assessments
resulting from these procedures are not based on the same
source of information: the assessment of a move given by a

method such as PNS is given by the method itself, whereas
the assessments of a move given by a game-playing method is
given by a judge program. Thus it cannot really be considered
as fair.

Moreover, when assessing a solving method such as PNS
with limited time, it can happen that it is able to evaluate
that a certain move is sufficient to give a certain score, but
is unable to show that it is in fact the optimal move and
leads to a better score (see Figure 6 for an example of such
a situation).

Fig. 6. The move shown can win the position, but it is easier to prove this
than the fact that it also maximizes the score (5 in this position)

To solve this difficulty, the easiest solution is to treat
solving methods the same way as game-playing ones: that is,
instead of using the evaluation given by the solving method
itself, to use a judge program to assess each method instead
of using it only for game-playing methods.

IV. RESULTS AND DISCUSSION

A. Experiments settings

All experiments presented here were made on Pentium 4
3Ghz equipped with 1Gb of RAM memory.

1) Solvers: Four solving and game-playing methods were
considered into these experiments:

• A DFPN solver, based on the description given in
Nagai’s thesis [7], with the improvement presented in
section III-B.1.

• A depth-first version of a WPNS solver [8], based on
the previous one

• An iterative deepening Alpha/Beta engine, using an
evaluation function based on the accessibility [3]

• A Monte-Carlo engine with UCT, based on our program
Campya [15]

The program used to get the correct values of positions
(the judge program) is the same DFPN solver as the one
used in the experimentations, except that it does not have
the limited time used for the comparison.

2) Problems creation: The game records used for the
problem extraction were obtained by self-play games of our
program, Campya. The time for the games was set to 5
minutes for each side, so that we would have games both
of a good level and various enough.

The extraction of positions from these game records was
based on the number of Amazons present in those positions:
We focused on extracting positions containing at most 4
Amazons, with at least one for each player.

Problems too simple were also removed from the database.
To perform this task, we relied on three characteristics of the
problems:

• Its size (in terms of number of empty squares)
• The mobility of each player, that is the number of moves

playable by each player from depth 0
• The possibility of blocking the second player in just one

move
We decided to cut arbitrarily problems whose size was

inferior to 10, as well as those where one player had less than
5 possible moves, and finally problems solved by blocking
the second player in one move. This let us with around 900
problems that we were able to solve in reasonable time to
get their exact value with our judge program, with maximum
depth (number of empty squares) varying from 10 to 24 (see
Figure 7). Examples of those problems are given in Figure 3.

Fig. 7. Number of problems generated per number of empty squares

3) Procedure: The 4 solvers presented above were ran
on our problem database using the following procedure. For
each problem (P) of the database:

• Get the theoretical value (V) of the problem using the
judge program

• For each method to be assessed:
– If it is a game-playing method, give it a time limit

of 10 seconds to chose a move
– If it is a solving method, give it a time limit

of 10 seconds for each iteration of its loop (See
section III-B.1) and return the best move computed

– Get a move from the assessed method
– Use the judge program to get the theoretical value

of the position obtained from playing the given
move in the initial position, and compare it to V

B. Experiments and Results

Results of the comparison are given in Table I and are quite
clear: the Alpha/Beta method outperforms all its competitors,
while the most recent version of PNS tested, WPNS, gives
better results than DFPN.

However, these percentage of solved problem do not
summarize everything. The Figure 8 gives us the percentage
of problems solved by each method considering the size
of the problems: it appears that, although the number of

TABLE I
PERCENTAGE OF PROBLEMS SOLVED FOR EACH ASSESSED METHOD

Method Percentage

DFPN 81.84

WPNS 87.74

Monte-Carlo 87.51

Alpha/Beta 98.52

problems solved by both WPNS and Monte-Carlo are similar,
the solving abilities of Monte-Carlo do not vary that much
with the depth, on the contrary of those of WPNS and DFPN
(the peak at the end cannot be really considered because there
is only one problem of size 24).

Fig. 8. percentage of problems solved for each method per depth

Finally, we should also consider the average error made
by each method compared to the correct solution. Parts of
the problems have been totally unsolved by both DFPN
and WPNS, because of insufficient time, in which case no
solution at all is given. But for other problems, as well as
for Monte-Carlo and Alpha/Beta, an incorrect solution is
sometimes given: in this case, it is possible to compute the
number of points of error compared to an optimal solution.
This value is given in table II. It appears at first clearly that
the dominance of the Alpha/Beta method is unquestionable,
but also that, even if it was not able to solve all the problems,
the mean error made by the Monte-Carlo method is quite low.
This shows that, despite its inability to catch very precise or
mathematical values such as an exact score, the performances
of this method are still very good for the task of solving
Amazons problems.

C. Results discussion

From these results, it is cleare that the performances of
PNS-based methods (DFPN and WPNS) are quite disappoint-
ing. Although DFPN is able to solve with a high accuracy
short problems, its performances drop considerably when the
depth of the problem goes over 13 or 14. It seems that this

TABLE II
STATISTICS ON UNSOLVED PROBLEMS

Method Percentage Percentage Average
unsolved badly solved scoring error

DFPN 9.49 6.74 4.97

WPNS 6.16 5.59 5.43

Monte-Carlo 0 12.49 1.67

Alpha/Beta 0 1.48 1.15

factor, combined with the high branching factor of Amazons,
is the main reason for its lack of performances at high depth.

Since the game of Amazons permits the apparition of
transpositions, and so of Directed Acyclic Graphs into the
game-tree, we had expected WPNS to perform better than
DFPN on this test-bed, and were not disappointed: although
the results of WPNS are not as good as those of Alpha/-
Beta, the improvement in performances over DFPN is quite
clear. But, when comparing directly the results of DFPN
and WPNS, it appears that DFPN was able to get strictly
better results than WPNS on 17 problems, while WPNS got
strictly better results on 57 problems: This shows us that
WPNS is not strictly better than DFPN, and that the method
should be tested more deeply before saying that it is a clear
improvement over PNS.

Game-playing methods (namely Alpha/Beta and Monte-
Carlo), on the other hand, got much better results, especially
Alpha/Beta. The mistakes made by Monte-Carlo should
obviously not be forgotten, but all in all, it also proved pretty
strong at solving Amazons problems, especially considering
that it is not designed at all to solve problems. These results
tend to confirm those of another recent study [2], which
showed good results for the Monte-Carlo method to solve Go
problems. However, their results for the Alpha/Beta method,
outperformed both by DFPN and badly by Monte-Carlo, do
not concur with the present ones.

The most plausible explanation to this behaviour would
be the presence, in the case of our test-bed, of a good
evaluation function in the Alpha/Beta engine. Although it
is possible to create a good evaluation function for the game
of Amazons, even if it is simple, this task is much more
complicated for the game of Go, even for a simple task
such as endgames. So even if both algorithms (Iterative
Deepening with Alpha/Beta and Monte-Carlo with UCT) are
powerful enough by themselves, it clearly seems that using
an evaluation function is a necessary need for the game of
Amazons, if we want to build a strong game-playing engine
(which also confirms results presented in [15]).

V. CONCLUSION AND FUTURE WORKS

We have built for this article an Amazons problems
database, and presented the results of our comparative study
for different solvers applied to Amazons endgames. Unex-
pectedly, traditional solving methods or their improvement
performed less good than game-playing methods. We at-
tribute these results mainly to the presence of an evaluation

function in the latter, which helps focus the search in the
correct direction. This work also shows the importance of
such a function for the game of Amazons.

It remains now to show until which complexity (possibly
qualified by the depth) of problems these game-playing
methods are efficient, the test-bed providing sufficient prob-
lems only up to depth 20. Also, we would like to improve
our Monte-Carlo engine so that it would be able to catch
the mathematical precision present behind these problems
and not make mistakes which, even if they are of minor
importance in term of score, can decide of a win or a loss
at high level of play.

APPENDIX

The problem database built for this study can
be found in XML format at the following adress:
http://www.jaist.ac.jp/˜s0720006/
AmazonsProblemsDatabase.txt

REFERENCES

[1] “Computer beats Pro at U.S. Go Congress,” http://www.usgo.
org/index.php?%23_id=4602

[2] P. Zhang, and K. S. Chen “Monte-Carlo Go Tactic Search,” in
Information Sciences 2007, 2007, pp. 662–670.

[3] J. Lieberum, “An Evaluation Function for the Game of Amazons,”
Theoretical computer science 349, pp. 230–244, 2005.

[4] M. Sakuta, and H. Iida, “Advances of AND/OR Tree-Search Algo-
rithms in Shogi Mating Search,” ICGA Journal vol. 24-4, pp. 231–235,
2001.

[5] L. V. Allis, et al. “Proof-Number Search,” Artificial Intelligence, vol.
66-1, pp. 91–124, 1994.

[6] D. A. McAllester, “Conspiracy numbers for min-max search,” Artificial
Intelligence 35, pp. 287–310, 1988.

[7] A. Nagai, “Df-pn Algorithm for Searching AND/OR Trees and Its
Applications,” Ph.D. Thesis, Tokyo University, 2001.

[8] T. Ueda, T. Hashimoto, J. Hashimoto, and H. Iida, “Weak Proof-
Number Search,” in Proceedings of the Conference on Computers and
Games 2008, To be published.

[9] D. E. Knuth, and R. W. Moore, “An Analysis of Alpha/Beta Pruning,”
Artificial Intelligence Vol. 6, No. 4, pp. 293-326, 1975.

[10] B. Abramson, “Expected-outcome: a general model of static evalua-
tion,” IEEE transactions on pattern analysis and machine intelligence
12:22, pp. 182–193, 1990.

[11] B. Brugmann, “Monte Carlo Go,” Technical report, Physics Depart-
ment, Syracuse University, 1993.

[12] L. Kocsis, and C. Szepesvari, “Bandit based monte-carlo planning,” in
Proceedings of the 15th International Conference on Machine Learning
(ICML), 2006, pp. 282-293.

[13] J. H. Conway, On Numbers And Games. Academic Press, 1976.
[14] M. Muller, and T. Tegos, “Experiments in Computer Amazons,” More

Games of No Chance, Cambridge University Press, 2001, pp. 243–260.
[15] J. Kloetzer, H. Iida, and B. Bouzy, “The Monte-Carlo approach in

Amazons,” in Proceedings of the Computer Games Workshop 2007,
2007, pp. 185–192.

