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1. Introduction
Retrograde analysis is a qualification and generation technique of positions in two-player,
complete information games. In Chess [Thomson 1986], retrograde analysis enabled researchers
to generate all six-piece positions [Thomson1996] and most of seven-or-eight-piece positions
[Nalimov & al. 2000]. In Checkers, this technique is used by Chinook [Schaeffer & Lake 1996].
In Awari [Lincke & Marzetta 2000], Kalah [Irving & al 2000] and Nine Men’s Morris [Gasser
1996], retrograde analysis was used to solve these games.

In Go, [Zobrist 1969] [Benson 1976] [Boon 1989]  [Berlekamp & Wolfe 1994] [Chen & Chen
1999] [Wolf 2000] have been the most important publications over the last forty years. But the
complexity of Go played on usual boards (19x19, 13x13 or 9x9) forbids direct use of retrograde
analysis. [Cazenave 1996, 2000] showed how to build small patterns with retrograde analysis on
specific goals such as “eye”  and “connection” . So far, however, no study about retrograde
analysis applied to the evaluation function of Go has been done.  This paper describes an
experiment aiming at enabling a Go program to use small patterns automatically generated by
retrograde analysis.

Section 2 of this paper contains the definitions and the notations. Section 3 shows the
experiments carried out on 3x3 “open”  boards, which allows to present the first feature of Go,
the possibility of “passing” . Section 4 describes the special management of “ko”  and other loops
arising on 4x4 open boards. Section 5 highlights the results obtained on 3x3 “semi-closed”  or
“closed”  boards in a solving game perspective. Section 6 defines a “heuristic player”  who plays
on large boards with the small patterns described in the previous sections. Before our conclusion,
section 7 discusses the results.
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2. Definitions and notations
We want to get a program playing on “ large”  boards. As retrograde analysis is not possible on
such boards, we cut the “ large”  board into “small”  board pieces: the middle pieces, the edge
pieces and the corner pieces. Figures below show examples of board pieces.

                                                                              middle piece                   corner piece

                           “ large”  board                                  edge piece                    “small”  board

In the following, we call “closed”  board, a board with 4 edges.  We call an “open”  board, a board
without any edge. We call “semi-open”  or “semi-closed”  the other kinds of boards. When a stone
is put on the edge of an open board, we made the simplifying hypothesis that the stone gets
enough liberties not to be captured1. Furthermore, we assume we get an evaluation function
which the difference of “points”  of each color. A black point is either an intersection occupied by
black or an empty intersection whose 4 neighbors are black points.

Black points         5                            3                        9
White points                     4                            6                        0
Evaluation                                      +1                          -3                      +9

Besides, we mainly use the combinatorial game theory [Conway 1976] notation with some
adaptations. First, we assume that Left is Black and Right is White. Secondly, combinatorial
game theory assumes the player who cannot play is the loser but we do not use this assumption.
In our study, the moves – excluding pass - leading to a repetition on the couple (position,
nextPlayer) are forbidden. A pass move is always allowed and the game ends when the two
players pass consecutively. When a game G is a switch, we write G = { l|r}  where l and m are
numbers. We use { g|}  to express that White passes. { |}  is the game in which the two players pass.
Furthermore, we introduce the notation G= { l|m|r} . In this case, l and r keep their meaning and m
is the value of the evaluation function. This will be useful when a game is { |} . In such a case, the
game is { |f|}  = f. If f>0 (respectively f<0, f=0), then Black wins (respectively White wins, the
game is a draw).

All the experiments described in this paper have been performed on a 450Mhz PC with 128Mo.
The pattern position description is called the left part of the pattern. It is composed of a
description of the black position and a description of the white position. Each colored description
                                                
1 A single stone on a closed edge has 3 liberties.
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is coded with a set of bits. We chose 16 bits – 2 bytes – to code patterns smaller than 4x4.
Therefore the left part is included into 4 bytes. The properties of the pattern belong to the right
part of the pattern. It is composed of the game value, denoted by { k|l} , constituted by two values
coded in one byte each. The right part also contains the set of moves advised for each player (2
bytes per player). Therefore, in our study, we assume a pattern is coded into 10 bytes. For each
size and kind of board in our study, the study contains the left part generation and the right part
qualification by retrograde analysis.

3. 1x1, 2x2 and 3x3 open board Go: the “ pass”  move management
1x1 open board Go is trivial. Its value is { +1|-1} . 2x2 open board Go is also very simple. The
total number of patterns 2x2 without symmetry, rotation and Black-White inversion is 34 = 81.
But, for boards larger than 2x2, the use of 90°, 180° or 270° rotations and symmetry reduces the
total number of patterns.  There are thirteen 2x2 open patterns. When the size of the board is
large, the interest of managing symmetries, rotations and inversions reduces the total number of
patterns by a factor 16. On closed boards (see Section 5) where the edge impact is important, this
management is not advised. 2x2 open board Go is bound to be a draw.

We generated and qualified all 3x3 open patterns by retrograde analysis. The total number of
patterns without capture, symmetry, rotation or inversion is 39 = 19 683. Without capture, but
with symmetry, rotation and inversion this number is 1444. The only particularity of 3x3 open
board is the capture of the central stone. With capture, symmetry, rotation and inversion this
number is 1423. The explicit game graph is contained in 10ko. With the 3x3 open pattern base, a
perfect player has been built. The game value is of course { +1|-1} . Furthermore, the values of all
3x3 open patterns have been calculated.

In this section, although its effect is not clear on very small open boards, we present the move
“pass”  management that we used in our study. In Go, a player does not want to play when he has
to reach a position which is worse than the position he can reach in passing. The pass move
management increases the complexity of min-max search [Mueller 2000]. On positions such as
{ |f|}  in which nobody wants to play, the game value is f. On { a, b, c, …|f|} , min-max simplifies
the game into { x|f|} . If x>f, then Black plays and the game value is x. In the other case Black
passes and the game value is f. When the two players play, the game is like { a, b, c, … |f| k, l, m,
… } , mini-max simplifies the game into { x|f|y} . If x>y then the game value is { x|y} . If x=y, then
the game is a number. If x<y, nobody wants to play. Three cases are possible. If y>f>x, then the
game value is { |f|} =f. If f>y>x, then the game value is { |f|y} =y. And symmetrically, if y>x>f,
then the game value is { x|f|} =x.

4. 4x4 open board Go : the “ ko”  management and some combinatorial aspects
We generated and qualified all the 4x4 open patterns. The total number without capture
symmetry, rotation and inversion equals 316 = 43 046 721. Without capture, it is 2 700 373. With
capture, it is 2 611 573. It takes about one hour to generate the base. On 4x4 boards, “ko”  may
arise:
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Combinatorial game theory already dealt with ko representation [Mueller & al. 1997] [Spight
1998]. What we keep from ko knowledge is the following fact. If Black plays, the game value is
calculated on the set of positions reached by Black in one move. If White plays, the game value is
calculated on the set of positions reached by White in two moves (the first one being the capture
of the ko). This fact is of importance. When you only want to prove that a game is solved, you
only have to compute the values if each player plays one move. But when you want to compute
values of games containing ko to be used within a global game, you have to consider two moves
in a row by the same player. It is worth noticing that a game included in a global one may violate
the rule forbidding repetition.

When a game A contains a ko, we write A = { … | B, …}  with B = {  A, … | … } . More precisely
we write A={ Ag1, Ag2, …, An1, An2,…, | B, Ab1, Ab2, …}  where Ag1, Ag2, … are the options
in which Black wins the ko, An1, An2, … are the options in which Black does not modify the ko,
B is the option in which White takes the ko and Ab1, Ab2, … are the options in which White
does not modify the ko. Symmetrically, we write B = {  A, Bn1, Bn2, … | Bb1, Bb2, … , Bp1,
Bp2, … }  where A is the option in which Black takes the ko, Bn1, Bn2, the options in which
Black does not modify the ko, Bb1, Bb2, … the options in which White does not modify the ko
and Bp1, Bp2, … the options in which White wins the ko.

When considering game A independently (for example if A is the whole board), the ko rule
forbids A from B. Game A keeps the same expression and we replace game B by B = {  Bn1,
Bn2, … | Bb1, Bb2, … , Bp1, Bp2, … } .

But, if we consider A as a sub-game (a small pattern) of a whole game (the whole board), the
correct management of ko is to calculate the two values by deleting the loop between A and B.
The left value is the maximal value of Ag1, Ag2, … , An1, An2, … assuming these values are
known. The right value is the minimal value of Ab1, Ab2, …, Bb1, Bb2, …, Bp1, Bp2, …
assuming these values are known. Therefore, our ko management module replaces the A and B
expressions by A = {  Ag1, Ag2, … , An1, An2, … | Ab1, Ab2, …, Bb1, Bb2, …, Bp1, Bp2, … }
only, which deletes the loop between A and B. By definition, An1, An2, … Ab1,  Ab2, …, Bb1,
Bb2, …, also contain kos. They have either been already modified by the ko management module
or they will be modified later. Practically, the more the An1, An2, …, Ab1,  Ab2, …, Bb1, Bb2,
…, there are, the longer the execution time is.

In addition, our experiments showed other loops. Fortunately these loops were solved by min-
max containing move pass.
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                                                    A = { B|C}

                                  B                                 C = {  D, E | F, G}

     D = { H | K }                       E = {  H, I | J, G}                    F = {  J, K | L, M}               G

    H = { A|F}          I = { N,A|O}               J = { |M}            K={ |L}                L = -12          M  = -12

                 N = {  B | P }             O = {  P | G }                   P = -6

We have B = -4, G = L = M = -12 et P = -6. With a mini-max and pass move we get: A = { -4|-
12} , C = D = F = G = H = J = K = -12, E = O = { -6|-12} , I = -6, N = { -4|-6} .

The 4x4 open pattern base was completely generated and qualified, and as a result, a perfect
player was built. The 4x4 open Go value is 0, because no capture arise from the empty board if
the two players play correctly. In our study, 26 Mbytes of memory are sufficient to store all the
open patterns. Execution lasts 10 hours.

5. 1x1, 2x2, 3x3 not open boards : the edge problem
The game value of 1x1 closed board Go is { |}  = 0. Due to the presence of the edge, 2x2 closed
board Go is not simple. With symmetry, rotations and inversion, there are eight 2x2 closed
patterns.

                          A={ B|0|-B}                                                     B={ C,D|+1|E,F}

          C={ G|+4|}                      D={ G|+2|H}           E={ H|0|-H}                          F={ C,H|0|-C,-H}

                             G={ |+3|-B}                                                        H={ G|+1|-D}

But, in order to find the value of the game, we did not use the rotation, symmetry and inversion
reduction because the rules of Go do not forbid the repetition of positions which are identical
with rotations, symmetry or inversion. The game value of each position above greatly depends on
the rule forbidding repetition. Moreover, we used a mini-max including pass move with a depth
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sufficient enough to contain the longest sequence of moves on such board with the forbidding
repetition rule. Finally, A={ +1|-1} , B={ +4|+1} , C=+4, D=-1, E= { +1|-1} , F={ +4|-4} , G=-1 and
H=+1.

With rotations, symmetry and inversion, 3x3 one-edge board Go has 4930 patterns. Its value is
{ +1|-1} . 3x3 one-corner board  Go has 4396 patterns. Its value is { +1|-1} . 3x3 closed board Go
has 924 patterns and its value is { +9|-9} . The optimal sequence is shown on the left figure below.
Some positions, like the second one starting from the left, are “seki” . The third figure starting
from the left gives the sequence obtained if Black plays first on the second figure. The fourth
figure starting from the left shows the sequence if White plays first on the second figure.

        +9                                  +3                                  -9                                 +9

To qualify a position without knowing all the values of the following positions, we very often use
a short cut. If P = {  M, N, … | O} , with M equals the maximal value of the evaluation function
(+9 on 3x3), with N and other options not calculated, then a good short cut was to write P =
{ M|O} . The use of this rule was very efficient and pruned a lot of moves. This short cut requires
to know the maximal and minimal values of the evaluation function.

6. Large boards : the “ heuristic”  player
To play on arbitrary size boards, we developed a “heuristic”  player. To choose the move to play,
the “heuristic”  player chooses the board piece sub-game with the highest temperature and plays
the move advised by this sub-game. For each size of large boards, the “heuristic 4x4”  player,
using 4x4 middle patterns and 3x3 corner and edge patterns performed twenty games against the
“heuristic 4x4”  player which used 3x3 patterns only. The results showed that the larger the board
is, the more easily the 4x4 player wins. Although we did not build any nxn heuristic player with
n>4, our results confirm the idea that the greater n is, the stronger the heuristic player is.

The heuristic nxn players sometimes play absurd moves. For example, they can put themselves
into “atari”  because the move is advised by a pattern whose temperature is high. This kind of
error occurs often enough to enable the 3x3 heuristic player to win some games against the 4x4
heuristic player.

Besides, we also made games between the heuristic 4x4 player and our specific Go playing
program Indigo [Bouzy 2000]. Of course, the heuristic player lost all the games because it did not
know “ ladders” , “group” , “ life” , “death”  or “ territory”  and many other concepts useful to a basic
Go program.
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7. Discussion
The next stage in our study, will center on 5x5 open board Go, 4x4 closed or semi-closed board
Go. The total number of 5x5 patterns without capture, symmetry, rotation or inversion is 325 =
847 288 609 443. Without capture but with symmetry, rotations or inversion, this number is
about 325 / 16 = 52 955 538 090 = 5.1010. This number can be compared to the 1011 states of Nine
Men’s Morris [Gasser 1996]. Assuming 8 bytes are needed to store the left part of each 5x5
pattern, and 10 bytes for the right part, then 18 bytes are sufficient to store one 5x5 pattern.
Therefore, 1012 bytes = 1 terabyte would be sufficient to store all the 5x5 pattern database. By
using a right hash function, the left part of the pattern is not needed and not storing the advised
moves of the pattern right part is possible. Therefore, such a hash function requires 2 bytes and
all the database can be contained in 100 gigabytes with the possibility of using the game value for
each entry. By limiting the aim of the database to the possibility of solving 5x5 Go only, one bit
is necessary for each 5x5 pattern. Thus 50 gigabits are necessary to contain all the 5x5 database
without the possibility of using the game value of each pattern.

No memory space problem but only loop problems exist for 4x4 closed boards. However, the
study of 4x4 closed board Go is not urgent because closed patterns are not needed on large
boards. This study may simply provide a theoretical interest.

We currently think no integration of this study can be performed within a Go playing program
such as Indigo [Bouzy 2001] without an important adaptation work. Actually, this approach does
not take the abstract description of the position into account. The size (4x4) of the board pieces is
too small to give to the heuristic player a local behavior which can be considered as correct.
Some attempts have been done to insert abstract concepts into the patterns: “ liberties”  or “eyes”
[Cazenave 1996,  2000]. Other concepts such as “group”  strength and “ territory”  estimation
should be inserted. But the combinatorial price to pay for this insertion, increases too quickly
indeed with the size of the patterns, and it forbids such insertion into current computers.

Retrograde analysis has been used to solve games [Gasser 1996], [Lincke & Marzetta 2000],
[Irving & al 2000] , [Schaeffer & Lake 1996]. In this context, for each size and kind of board
piece, the table below gives the game value of the initial position of the associated game and the
number of positions taking symmetry, rotations and inversion into account. The gray boxes have
not been calculated by our study.

size 1x1 2x2 3x3 4x4
middle pattern { +1|-1} 2 0 13 { +1|-1} 1423 0 2 611 573
edge pattern { +1|-1} 2 0 25 { +1|-1} 4930 0 _
corner pattern { +1|-1} 2 0 24 { +1|-1} 4396 0 _
closed pattern 0 2 { +1|-1} 8 { +9|-9} 924 { +16|-16} _

Instead of determining the game value of these games only, our study determined the game
values of all the positions of these games. In performing such experiments on small board pieces
we found similar results to those in former works such as [Thorpe & Walden 1972] or in recent
works such as [Lorentz 1997]. Finally, the work of [Berlekamp & Wolfe 1994] in endgame being
so successful, we need to compare our approach to their approach. First, Berlekamp’s model only
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applies on particular positions whereas our approach applies on all positions. The positions
processed by Berlekamp’s model include board pieces which are independent from each other
and which are already processed (the game value of the board pieces is given to the model). In
our approach, board pieces can be dependent on each other and the game value of the board
pieces are computed by retrograde analysis. Furthermore, Berlekamp’s model reaches a global
decision which can be assessed as perfect, and this is not the case of our heuristic player’s global
decision module.

8. Conclusion
This paper answered the question of knowing how retrograde analysis, mainly studied in Chess
and in other two-player complete information games, can be used in Go. After giving the
definition of open, and closed boards, our approach calculated all the pattern game values up to
3x3 boards and 4x4 open boards. Beyond the values of these games, which were foreseeable, our
retrograde analysis approach generated and qualified all the positions of these games so as to be
used in a Go program playing on large boards.

Our approach dealt with the pass move and ko. On closed or semi-closed boards, our approach
stopped on 3x3 boards. On open boards, we finished with 4x4 boards due to memory space and
execution time limitations. There are 2 611 573 four by four open positions occupying 26 Mbytes
of memory. They have been generated and qualified by retrograde analysis and used by a
heuristic player. There are 5.1010 five by five open positions that we did not generate because it
would need 100 Gbytes to be used by a Go program, or about 50 Gbits to be used in a solving
game perspective. Besides, the automatically generated pattern database enables us to create a
heuristic player playing complete games on large boards. Furthermore, the interesting point lies
in the creation of a player which owns very little hand-coded knowledge: rules of the game,
elementary evaluation function, ko and pass modules. This player is mainly composed of a large
patterns database automatically built by the computer. Nevertheless, this approach is slightly
disappointing because the size of board pieces is very small (4x4) and the local behavior of the
heuristic player is still mediocre. However, this approach can be improved with 5x5 patterns in
the near future or with 6x6 patterns in a distant future. This approach cannot work by itself to
play a complete game with good results. An abstract description is needed. But this approach is
worthwhile to help Go programs in the endgame. Our work can be adapted to other games as well
and can be used with other evaluation functions relevant to other phases of the game such as
middle game.
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