Associating domain-dependent knowledge and
Monte Carlo approaches within a go program

Bruno Bouzy
Université Paris 5, UFR de mathématiques et d’informatique, C.R.I.P.5,
45, rue des Saints-Péres 75270 Paris Cedex 06 France,
tél: (33) (0)1 44 55 35 58, fax: (33) (0)1 44 55 35 35,
email: bouzy@math-info.univ-paris5.fr,

http: www.math-info.univ-paris5.fr/~bouzy/

1 Introduction

Over the past years, we have improved Indigo [4] our
go program by starting from the previous year’s ver-
sion, considering its main defects and trying to sup-
ply remedies. As Indigo is largely based on domain-
dependent knowledge, it has become more and more
difficult to improve. Thus, in 2002, we tried different
approaches to build Olga, a very little knowledge go
program based on Monte Carlo simulations. Inter-
estingly, Olga contains very little go knowledge, and,
yet, can be situated on a par with Indigo containing a
lot of go knowledge on 9x9 boards [8]. Consequently,
it is worthwhile to assess the level of a program that
uses both domain-dependent knowledge and Monte
Carlo approaches. In this paper, section 2 describes
the related work: Indigo, a domain-dependent knowl-
edge approach, and existing Monte Carlo approaches.
Then, section 3 focuses on the description of the pro-
grams to be assessed. Before conclusion, section 4
highlights the results which show that it is possible
to associate domain-dependent knowledge and Monte
Carlo approaches within a more efficient go program

than the early ones.

2 Related Work

In this section, we put the emphasis on the strong and
weak points of Indigo, our domain-dependent knowl-
edge based program, and on already existing Monte
Carlo go programs.

2.1 A knowledge based approach

Indigo [4, 3] is a classical go program based on
tree search [6] and on extensive knowledge [7]. For
instance, territories and influence are modelled by
means of the mathematical morphology [5]. As most
domain-dependent knowledge go programs, Indigo’s
weaknesses lie in a weak global sense that results
from the breaking up of the whole problem into sub-
problems. Furthermore, some holes in the knowl-
edge remain difficult to cover because of interactions
between the various elements of knowledge. Fortu-
nately, relative to its level, Indigo has its strengthes,

such as fighting by using adequate rules to this end,
and tactical ability by using tree search.

2.2 Monte Carlo Go approaches

The existing work about Monte Carlo simulations ap-
plied to computer go is [9, 10] and recently [8]. [9, 10],
based on simulated annealing [11], should be more
appropriately named simulated annealing go. [8] is a
recent study of Monte Carlo approaches in its gen-
eral meaning - using the computer random function.
It experimentally proves the superiority of progres-
sive pruning over simulated annealing. Progressive
pruning is based on [1, 2]. Each move has a mean
value m, a standard deviation o, a left expected out-
come m; and a right expected outcome m,. For a
move, m; = m - orqg and m, = m + orq. rq is called
the ratio for difference. A move M; is said to be
statistically inferior to another move M, if M;.m,
< Ms.m;. Two moves M; and M, are statistically
equal when M;.0<o., and Ms.0<o. and no move is
statistically inferior to the other. o, is called stan-
dard deviation for equality. After a minimal number
(N, times the number of legal moves) of random
games, a move is pruned as soon as it is statistically
inferior to another move. Therefore, the number of
candidate moves decreases while the process is run-
ning. The process stops either when there is only one
move left (this move is selected), when the moves left
are statistically equal, or when a maximal threshold
of iterations is reached (N2, times the number of le-
gal moves). In these two cases, the move with the
highest expected outcome is chosen. Independently
of the use of progressive pruning, Monte Carlo based
go programs such as Olga have a good global sense
but a weak tactical ability.

3 Owur Work

Given that knowledge based go programs such as In-
digo have a good tactical ability, and that Monte
Carlo go programs such as Olga have a good global
sense, it appeared logical to develop a go program
that uses both knowledge and Monte Carlo simula-
tions to obtain the best of both worlds: a good tacti-

cal ability and a good global sense. From the Monte
Carlo viewpoint, starting from Olga(pseudo = false,
preprocess = false), we have built two programs.
First, we replaced the uniform probability based
random move generator by a pseudo-random move
generator using little go knowledge, which yielded
Olga(pseudo = true, preprocess = false). Second,
we speeded up and enhanced this program by pre-
processing it with a knowledge based move generator
available in Indigo, which brought about Olga(pseudo
= true, preprocess = true).

3.1 Pseudo-random move generation

Olga(pseudo = true) uses pseudo-random game simu-
lations. The pseudo random function is obtained by
adding rules about string captures and patterns to
the random function. On the one hand, a string with
one liberty only, results in a very great probability
to the move that captures the string. On the other
hand, all the very small patterns of Indigo, that are
included in a 3x3 window centered around a move,
are used to build a small database of 3x3 patterns.
Each pattern advises the random move generator to
play the move situated in its center with an urgency
accessed in a table. When neither the edges of the
board nor the symmetries and rotations are taken
into account, there are only 3% patterns of this kind.
Taking the edges into account, multiplies this number
by 21 at most. Time constraints make it impossible
to consider symmetries and rotations. Nevertheless,
it is easy to set up a table of move urgencies in the
memory of the computer whose access is direct in the
3x3 bit set around the move. This way, the simulation
time is acceptable: twice as slow as the uniform prob-
ability based simulation. The pseudo-random games
are more plausible games than completely random
games, which gives a better approximation of the po-
sition evaluation. The remaining problem lies in the
presence of bias while building the move urgencies.
In this context, we reuse the Indigo pattern database,
which has been tuned for several years and whose ur-
gencies are, if not optimized, acceptable. The stan-
dard deviation of the pseudo-random game mean is
roughly the same as the standard deviation of the
simple random games. Consequently, the number

of pseudo-random games necessary to obtain a given
precision with Olga(pseudo = true) remains the same
as in Olga(pseudo = false).

3.2 Preprocessing with knowledge

Since Olga(pseudo = true, preprocess = false) does
not use any tree search, it stays weak tactically. Fur-
thermore, because Monte Carlo simulations are very
expensive to compute with a sufficient precision, this
program spends one full day to play a 19x19 game on
a 1.7 Ghz computer. Therefore, to overcome these
two downsides in one move, we added Indigo’s move
generator to Olga as a preprocessor of simulations.
This preprocessor selects the N, best moves and gives
them to the Monte Carlo module that chooses the
best move. Obviously, the tactically bad moves are
eliminated by the preprocessor and a small value of
N, enables Olga(pseudo = true, preprocess = true)
to complete a 19x19 game in a reasonable time.

4 Experiments

This section provides the results of matches assess-
ing Olga(pseudo = true, preprocess = false) and
Olga(pseudo = true, preprocess = true) against In-
digo.

4.1 Pseudo-random based vs Indigo

We set up games between Olga(pseudo = true, pre-
process = false) and Indigo2002 on 9x9, 13x13 and
19x19 boards. Table 1 shows the results on Olga’s
side (+ means a win for Olga).

board size | 9x9 | 13x13 | 19x19
mean +12 | +24 +45
time 20° | 2h30’ 20h
games 20 20 1

Table 1: Time and relative score of Olga(pseudo =
true, preprocess = false, rq = 1.0, 0. = 0.4) against
Indigo2002 for the usual board sizes

On 9x9, while Olga(pseudo = false) matches In-
digo [8], Olga(pseudo = true) playing black wins all
the games, and Olga(pseudo = true) playing white
wins half of the games. On 13x13, while Olga(pseudo
= false) is twenty points worse than Indigo [§],
Olga(pseudo = true) playing black wins 90% of the
games, and 70% when playing white. This board
size is the appropriate one to underline the strength
of Olga(pseudo = true). Due to the length of the
game on 19x19 boards, we set up only one game in
which Olga(pseudo = true) playing black wins with
45 points. This game highlights the very different
styles of programs rather than the quantitative result.
Olga plays very well globally by cercling large areas,
and killing groups whenever it is possible. Thanks to
its tactical strength, Indigo collects points, and takes
advantage of Olga’s blind point in tactics.

4.2 Knowledge and pseudo-random
based vs Indigo

In this set of experiments, we assess Olga(pseudo =
true, preprocess = true) against Indigo 2002 in time
and level on 19x19 games. The relevant parameters
for controlling both time and level are N,,, rq, and
N,. Table 2 shows the results in N,.

Ny 2 4 7 10 15 20
mean | -2 | +19 | +25 | +55 | +62 | +85
time | 15’ | 40’ | 1h10’ | 1h30’ | 2h15’ | 2h45’
games | 80 | 80 80 25 18 17

Table 2: Time and relative score of Olga(pseudo =
true, preprocess = true, N,, = 50, rg = 1.0, 0, =
0.4) against Indigo2002 for N, varying from 2 up to
20.

Olga(pseudo = true, Ny, = 1) corresponds to the
urgent method [6] of Indigo2002 selecting one move
without verification. Its level is necessarily inferior
to the one of Indigo2002 that uses a calm method
in addition to the urgent method with verification
[6]. Thus, its entry is not mentioned in the table.
Olga(pseudo = true, N, = 2) selecting two moves
with Indigo2002’s urgent method while choosing the

best one by running pseudo-random game simula-
tions, has a great similarity to Indigo2002’s urgent
method. This explains the almost zero mean when
N, = 2. Olga(Ns; = 4) and Olga(N, = 7) are in-
teresting as they play significantly better on average
than Indigo2002 and their execution time is suitable
on 1.7 Ghz computers. With more computing power,
N; can be higher and Olga(Ns; = 10, 15, 20), then,
gives good results. Moreover, other experiments car-
ried out with other values for N,,, r4, and o, show
that NV, < 25 is not acceptable, and that rq4 > 1.0
is mandatory. o, has not much importance; its value
can be lowered to 0.2 to obtain slightly better results.

5 Conclusion

Starting from Indigo2002, a domain-dependent
knowledge and tree search based program, we set
up a new go program, Olga(pseudo = true, prepro-
cess = true) that associates this domain-dependent
knowledge with a Monte Carlo approach. First, local
knowledge is used efficiently to yield the non-uniform
probability to moves within pseudo-random games.
Second, a lot of knowledge is used to filter the moves
provided to Monte Carlo simulations, and thereby,
avoiding tactical blunders.

On 19x19 boards and under reasonable time con-
straints, this program ranks twenty points better on
average than Indigo2002. For 2003, this constitutes a
significant improvement. In such a context, we may
say that pseudo-random Monte Carlo simulations
provide the 2003 remedy to Indigo2002’s weaknesses.
Indigo2003 will be built by merging Indigo2002 and
Olga.

From the statistical angle, the main perspective
is to generate both the pattern database crucial to
preprocessing and the pattern database for pseudo-
random games, in an automatic manner by using
games available on the Internet as advised by [12].
Lastly, increasing the size of patterns for pseudo-
random games to greater shapes will be relevant, con-
sidering the ever-increasing power of computers.

References

[1]

[10]

[11]

[12]

B. Abramson. Expected-outcome : a general
model of static evaluation. IEEE transactions
on PAMI, 12, pages 182-193, 1990.

D. Billings, A. Davidson, J. Schaeffer, and
D. Szafron. The challenge of poker. Artificial
Intelligence 134, pages 201-240, 2002.

B. Bouzy. The indigo program. In 2nd Game
Programming Workshop in Japan, pages 197—
206, 1995.

B. Bouzy. Indigo home page. www.math-
info.univ-pariss.fr/~bouzy /INDIGO.html,
2002.

B. Bouzy. Mathematical morphology applied to
computer go. International Journal of Pattern
Recognition and Artificial Intelligence vol 17 n2,
March 2003.

B. Bouzy. The move decision process of indigo.
ICGA Journal vol 25 n1, March 2003.

B. Bouzy and T. Cazenave. Computer go: an ai
oriented survey. Artificial Intelligence 132, pages
39-103, 2001.

B. Bouzy and B. Helmestetter. Develop-
ments on monte carlo go. www.math-info.univ-
paris5.fr/~bouzy /publications.html, 2003.

B. Bruegmann. Monte carlo

go.

www.joy.ne.jp/welcome/igs/Go/computer/mcgo.tex.Z,

1993.

P. Kaminski. Vegos
www.ideanest.com/vegos/, 2003.

S. Kirkpatrick, C.D. Gelatt, and M.P. Vecchi.
Optimization by simulated annealing. Science,
May 1983.

N. Schraudolf, N. Dayan, and T. Sejnowski.
Temporal difference learning of a position evalu-
ation in the game of go. In Cowan, Tesauro, and
Alspector, editors, Advances in Neural Informa-
tion Processing Systems, volume 6, pages 817—
824. Morgan Kaufmann, San Francisco, 1994.

home page.

