Boolean games revisited: compact preference representation in games

Elise Bonzon, bonzon@irit.fr

AN EXAMPLE

We consider here a Boolean *n*-players version of the well-known prisoners' dilemma. *n* prisoners (denoted by 1, ..., n) are kept in separate cells. The same proposal is made to each of them: "Either you cover your accomplices (C_i , i = 1, ..., n) or you denounce them ($\neg C_i$, i = 1, ..., n).

- Denouncing makes you freed while your partners will be sent to prison (except those who denounced you as well: these ones will be freed too).
- if none of you chooses to denounce, everyone will be freed."

Compact representation: $G = (A, V, \pi, \Phi)$ with • $A = \{1, 2, ..., n\}$, set of players, • $V = \{C_1, \dots, C_n\}$, set of propositional variables, • $\forall i \in \{1, \dots, n\}, \pi_i = \{C_i\}$, control assignment function, and • $\forall i \in \{1, \ldots, n\}, \varphi_i = \{(C_1 \land C_2 \land \ldots \land C_n) \lor \neg C_i\}$, utility functions.

-MAIN NOTIONS-

Pure-strategy Nash equilibria (PNE)

Dominated strategies

Let $s_i \in 2^{\pi_i}$ be a strategy for player *i*.

A PNE is a strategy profile such that each player's strategy is an optimum response to the other

Representation of this game in normal form for n = 3:

$3: C_3$			$3:\overline{C}_3$		
2	C_2	\overline{C}_2	2	C_2	\overline{C}_2
C_1	(1, 1, 1)	(0, 1, 0)	C_1	(0, 0, 1)	(0, 1, 1)
\overline{C}_1	(1, 0, 0)	(1, 1, 0)	\overline{C}_1	(1, 0, 1)	(1, 1, 1)

• s_i is strictly dominated if there exists another strategy s'_i such that, whatever the strategies of the other players, s'_i assures to player *i* a strictly bigger utility than s_i : $\exists s'_i \in 2^{\pi_i}$ s.t. $\forall s_{-i} \in 2^{\pi_{-i}}$, $u_i(s_i, s_{-i}) < u_i(s'_i, s_{-i}).$

players' strategies. $S = \{s_1, \ldots, s_n\}$ is a **pure-strategy Nash equilibrium** if and only if:

 $\forall i \in \{1, \ldots, n\}, \forall s'_i \in 2^{\pi_i}, u_i(S) \ge u_i(s_{-i}, s'_i)$

The 3-players version of prisoners' dilemma has 2 PNE: $\{C_1C_2C_3\}$ and $\{\overline{C_1C_2C_3}\}$.

Characterization of PNE: *S* is a PNE for *G* if and only if: $S \models \bigwedge_i (\varphi_i \lor (\neg \exists i : \varphi_i))$

Complexity: Deciding whether there is a PNE in a Boolean game is Σ_2^p -complete.

• s_i is weakly dominated if $\exists s'_i \in 2^{\pi_i}$ s.t. $\forall s_{-i} \in 2^{\pi_{-i}}, u_i(s_i, s_{-i}) \leq u_i(s'_i, s_{-i})$ and $\exists s_{-i} \in 2^{\pi_{-i}}$ s.t. $u_i(s_i, s_{-i}) < u_i(s'_i, s_{-i}).$

Elimination of dominated strategies in *n*-players version of prisoners' dilemma gives one result: $\{C_1C_2C_3\}.$

Characterization of dominated strategies:

- s_i strictly dominates strategy s'_i if and only if: $s_i \models (\neg \exists -i : \neg \varphi_i)$ and $s'_i \models (\neg \exists -i : \varphi_i)$.
- s_i weakly dominates strategy s'_i if and only if: $(\varphi_i)_{s'_i} \models (\varphi_i)_{s_i}$ and $(\varphi_i)_{s_i} \not\models (\varphi_i)_{s'_i}$.

Complexity: Deciding whether a given strategy s'_i is weakly dominated is Σ_2^p -complete.

INTRODUCTION OF PREFERENCES. Let $Pref_G = \langle \succeq_1, \dots, \succeq_n \rangle$ a collection of preference relations. • *S* is a weak PNE (WPNE) for *G* iff $\forall i \in \{1, \ldots, n\}, \forall s'_i \in 2^{\pi_i}, (s'_i, s_{-i}) \not\succ_i (s_i, s_{-i})$ • *S* is a strong PNE (SPNE) for *G* iff $\forall i \in \{1, \ldots, n\}, \forall s'_i \in 2^{\pi_i}, (s'_i, s_{-i}) \leq i (s_i, s_{-i})$ • $NE_{strong}(G)$ and $NE_{weak}(G)$ denote respectively the set of strong and weak PNEs for G.

-2 CASES-

Prioritized goals

CP-nets

A prioritized goal base Σ is a collection $\langle \Sigma^1; \ldots; \Sigma^p \rangle$ of sets of propositional formulas.

• Σ^{j} : set of goals of priority j,

• the smaller j, the more prioritary the formulas in Σ^{j} .

 $\mathcal{N} = \langle \mathcal{G}, \mathcal{T} \rangle$ is a **CP-net on** *V*, where \mathcal{G} is a directed graph over *V*, and \mathcal{T} is a set of conditional preference tables $CPT(X_i)$ for each $X_i \in V$.

Each $CPT(X_j)$ associates a total order \succ_p^j with each instantiation $p \in 2^{Pa(X_j)}$.

- **Discrimin preference relation** $S \succ_i^{disc} S'$ iff $\exists k \in \{1, \dots, p\}$ such that: $Sat(S, \Sigma^k) \supset Sat(S', \Sigma^k)$ and $\forall j < k, Sat(S, \Sigma^j) = Sat(S', \Sigma^j)$
- **Leximin preference relation** $S \succ_i^{lex} S'$ iff $\exists k \in \{1, ..., p\}$ such that: $|Sat(S, \Sigma^k)| > |Sat(S', \Sigma^k)|$ and $\forall j < k, |Sat(S, \Sigma^j)| = |Sat(S', \Sigma^j)|.$
- **Best-out preference relation** Let $a(s) = \min\{j \text{ such that } \exists \varphi \in \Sigma^j, S \not\models \varphi\}$, with the convention $min(\emptyset) = +\infty$. Then $S \succeq_i^{bo} S'$ iff $a_i(S) \ge a_i(S')$.
- A **PG-Boolean game** is a 4-uple $G = (A, V, \pi, \Phi)$, where $\Phi = (\Sigma_1, \dots, \Sigma_n)$.
- $NE^{disc}_{strong}(G) \subseteq NE^{lex}_{strong}(G) \subseteq NE^{bo}_{strong}(G)$,
- $NE_{weak}^{lex}(G) \subseteq NE_{weak}^{disc}(G) \subseteq NE_{weak}^{bo}(G)$.

 $G^{[1 \rightarrow k]} = (A, V, \pi, \Phi^{[1 \rightarrow k]})$ denotes the k-reduced game of G in which all players' goals in G are reduced in their k first strata: $\Phi^{[1 \to k]} = \langle \Sigma_1^{[1 \to k]}, \dots, \Sigma_n^{[1 \to k]} \rangle$. Let $c \in \{discr, lex, bo\}$. If S is a SPNE (resp. WPNE) for $Pref_{G^{[1 \to k]}}^c$ of the game $G^{[1 \to k]}$, then S is a SPNE (resp. WPNE) for $Pref_{G^{[1 \rightarrow (k-1)]}}^{c}$ of the game $G^{[1 \rightarrow (k-1)]}$.

Let $G = (A, V, \pi, \Phi)$ with $A = \{1, 2\}, V = \{a, b, c\}, \pi_1 = \{a, c\}, \pi_2 = \{b\}, \Sigma_1 = \langle a; (\neg b, c) \rangle, \Sigma_2 = \{a, b, c\}, \pi_1 = \{a, c\}, \pi_2 = \{b\}, \Sigma_1 = \langle a; (\neg b, c) \rangle$ $\langle (\neg b, \neg c); \neg a \rangle.$

A **CP-boolean game** is a 4-uple $G = (A, V, \pi, \Phi)$, where $\Phi = \langle \mathcal{N}_1, \dots, \mathcal{N}_n \rangle$. Each \mathcal{N}_i is a CP-net on

Let $G = (A, V, \pi, \Phi)$ be a CP-boolean game such the graphs G_i are all identical $(\forall i, j, G_i = G_i)$ and acyclic. Then G has one and only one strong PNE. For each player *i*, G_i is denoted by (V, Arc_i) , with Arc_i being the set of edges of *i*'s CP-net.

- The union graph of G is defined by $\mathcal{G} = (V, Arc_1 \cup \ldots \cup Arc_n)$.
- The normalized game equivalent to G, denoted by $G^* = \{A, V, \pi, \Phi^*\}$, is the game obtained from *G* by rewriting, where
- the graph of each player's CP-net has been replaced by the graph of the union of CP-nets of G
- and the CPT of each player's CP-net are modified in order to fit with the new graph, keeping the same preferences

Let $G = (A, V, \pi, \Phi)$ be a CP-boolean game. If the union graph of G is acyclic then G has one and only one SPNE.

 $G = (A, V, \pi, \Phi)$ where $A = \{1, 2\}, V = \{a, b, c\}, \pi_1 = \{a, b\}, \pi_2 = \{c\}, \mathcal{N}_1$ and \mathcal{N}_2 are represented on the following figure, with the associated preferences.

• **Discrimin and Leximin**: $NE_{weak}^{disc}(G) = NE_{strong}^{disc}(G) = \{a\overline{b}c\}$ • **Best Out**: $NE_{weak}^{bo}(G) = NE_{strong}^{bo}(G) = \{abc, a\overline{b}c\}$

 $\overline{a} \wedge \overline{b} \ c \succ$ $\overline{a}\overline{b}\overline{c}$

 \mathcal{N}_1 \mathcal{N}_2 Using these partial pre-orders, Nash equilibria are: $NE_{strong} = NE_{weak} = \{abc\}$. It is possible to verify then the union graph is acyclic.

 $a\overline{b}c$

