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AN EXAMPLE

We consider here a Boolean n-players version of the well-known prisoners’ dilemma. n prisoners
(denoted by 1, . . . ,n) are kept in separate cells. The same proposal is made to each of them:
“Either you cover your accomplices (Ci, i = 1, . . . ,n) or you denounce them (¬Ci, i = 1, . . . ,n).

• Denouncing makes you freed while your partners will be sent to prison (except those who de-
nounced you as well: these ones will be freed too).

• if none of you chooses to denounce, everyone will be freed.”

Representation of this game in normal form for n = 3:
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C1 (1, 1, 1) (0, 1, 0)

C1 (1, 0, 0) (1, 1, 0)
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C2 C2

C1 (0, 0, 1) (0, 1, 1)

C1 (1, 0, 1) (1, 1, 1)

Compact representation: G = (A,V,π,Φ) with

• A = {1,2, . . . ,n}, set of players,

•V = {C1, . . . ,Cn}, set of propositional variables,

• ∀i ∈ {1, . . . ,n},πi = {Ci}, control assignment function, and

• ∀i ∈ {1, . . . ,n},ϕi = {(C1∧C2∧ . . .∧Cn)∨¬Ci}, utility functions.

MAIN NOTIONS

Pure-strategy Nash equilibria (PNE) Dominated strategies

A PNE is a strategy profile such that each player’s strategy is an optimum response to the other
players’ strategies. S = {s1, . . . ,sn} is a pure-strategy Nash equilibrium if and only if:

∀i ∈ {1, . . . ,n},∀s′i ∈ 2πi,ui(S) ≥ ui(s−i,s′i)

Let si ∈ 2πi be a strategy for player i.

• si is strictly dominated if there exists another strategy s′i such that, whatever the strategies of
the other players, s′i assures to player i a strictly bigger utility than si: ∃s′i ∈ 2πi s.t. ∀s−i ∈ 2π−i,
ui(si,s−i) < ui(s′i,s−i).

• si is weakly dominated if ∃s′i ∈ 2πi s.t. ∀s−i ∈ 2π−i, ui(si,s−i) ≤ ui(s′i,s−i) and ∃s−i ∈ 2π−i s.t.
ui(si,s−i) < ui(s′i,s−i).

The 3-players version of prisoners’ dilemma has 2 PNE: {C1C2C3} and {C1C2C3}.
Elimination of dominated strategies in n-players version of prisoners’ dilemma gives one result:
{C1C2C3}.

Characterization of PNE:
S is a PNE for G if and only if: S |=

V

i(ϕi∨ (¬∃i : ϕi))

Characterization of dominated strategies:

• si strictly dominates strategy s′i if and only if: si |= (¬∃− i : ¬ϕi) and s′i |= (¬∃− i : ϕi).

• si weakly dominates strategy s′i if and only if: (ϕi)s′i
|= (ϕi)si and (ϕi)si 6|= (ϕi)s′i

.

Complexity: Deciding whether there is a PNE in a Boolean game is Σp
2-complete. Complexity: Deciding whether a given strategy s′i is weakly dominated is Σp

2-complete.

INTRODUCTION OF PREFERENCES.
Let Pre fG = 〈º1, . . . ,ºn〉 a collection of preference relations.

• S is a weak PNE (WPNE) for G iff ∀i ∈ {1, . . . ,n},∀s′i ∈ 2πi,(s′i,s−i) 6Âi (si,s−i)

• S is a strong PNE (SPNE) for G iff ∀i ∈ {1, . . . ,n},∀s′i ∈ 2πi,(s′i,s−i) ¹i (si,s−i)

• NEstrong(G) and NEweak(G) denote respectively the set of strong and weak PNEs for G.

2 CASES

Prioritized goals CP-nets

A prioritized goal base Σ is a collection 〈Σ1; . . . ; Σp〉 of sets of propositional formulas.

• Σ j: set of goals of priority j,

• the smaller j, the more prioritary the formulas in Σ j.

Discrimin preference relation S Âdisc
i S′ iff ∃k ∈ {1, . . . , p} such that: Sat(S,Σk) ⊃ Sat(S′,Σk) and

∀ j < k, Sat(S,Σ j) = Sat(S′,Σ j)

Leximin preference relation S Âlex
i S′ iff ∃k ∈ {1, . . . , p} such that: |Sat(S,Σk)| > |Sat(S′,Σk)| and

∀ j < k, |Sat(S,Σ j)| = |Sat(S′,Σ j)|.

Best-out preference relation Let a(s) = min{ j such that ∃ϕ ∈ Σ j,S 6|= ϕ}, with the convention
min(∅) = +∞. Then S ºbo

i S′ iff ai(S) ≥ ai(S′).

A PG-Boolean game is a 4-uple G = (A,V,π,Φ), where Φ = (Σ1, . . . ,Σn).

• NEdisc
strong(G) ⊆ NE lex

strong(G) ⊆ NEbo
strong(G),

• NE lex
weak(G) ⊆ NEdisc

weak(G) ⊆ NEbo
weak(G).

G[1→k] = (A,V,π,Φ[1→k]) denotes the k-reduced game of G in which all players’ goals in G are
reduced in their k first strata: Φ[1→k] = 〈Σ[1→k]

1 , . . . ,Σ[1→k]
n 〉.

Let c ∈ {discr, lex,bo}. If S is a SPNE (resp. WPNE) for Pre f c
G[1→k] of the game G[1→k], then S is a

SPNE (resp. WPNE) for Pre f c
G[1→(k−1)] of the game G[1→(k−1)].

N = 〈G ,T 〉 is a CP-net on V , where G is a directed graph over V , and T is a set of conditional
preference tables CPT (X j) for each X j ∈V .
Each CPT (X j) associates a total order Â j

p with each instantiation p ∈ 2Pa(X j).
A CP-boolean game is a 4-uple G = (A,V,π,Φ), where Φ = 〈N1, . . . ,Nn〉. Each Ni is a CP-net on
V .
Let G = (A,V,π,Φ) be a CP-boolean game such the graphs Gi are all identical (∀i, j, Gi = G j) and
acyclic. Then G has one and only one strong PNE.
For each player i, Gi is denoted by (V,Arci), with Arci being the set of edges of i’s CP-net.

• The union graph of G is defined by G = (V,Arc1∪ . . .∪Arcn).

• The normalized game equivalent to G, denoted by G∗ = {A,V,π,Φ∗}, is the game obtained from
G by rewriting, where

– the graph of each player’s CP-net has been replaced by the graph of the union of CP-nets of G
– and the CPT of each player’s CP-net are modified in order to fit with the new graph, keeping the

same preferences
Let G = (A,V,π,Φ) be a CP-boolean game. If the union graph of G is acyclic then G has one and
only one SPNE.

Let G = (A,V,π,Φ) with A = {1,2}, V = {a,b,c}, π1 = {a,c}, π2 = {b}, Σ1 = 〈a;(¬b,c)〉, Σ2 =
〈(¬b,¬c);¬a〉.
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• Discrimin and Leximin: NEdisc
weak(G) = NEdisc

strong(G) = {abc}

• Best Out: NEbo
weak(G) = NEbo

strong(G) = {abc,abc}

G = (A,V,π,Φ) where A = {1,2}, V = {a,b,c}, π1 = {a,b}, π2 = {c}, N1 and N2 are represented
on the following figure, with the associated preferences.
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Using these partial pre-orders, Nash equilibria are: NEstrong = NEweak = {abc}. It is possible to verify
then the union graph is acyclic.
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