Boolean games revisited: compact preference representation in games

Elise Bonzon, bonzon@irit.f

An Example

We consider here a Boolean n-players version of the well-known prisoners' dilemma. n prisoner (denoted by $1, \ldots, n$) are kept in separate cells. The same proposal is made to each of them: "Either you cover your accomplices $\left(C_{i}, i=1, \ldots, n\right)$ or you denounce them $\left(\neg C_{i}, i=1, \ldots, n\right)$.

- Denouncing makes you freed while your partners will be sent to prison (except those who denounced you as well: these ones will be freed too)
- if none of you chooses to denounce, everyone will be freed."

Representation of this game in normal form for $n=3$:

$3: C_{3}$				
2	C_{2}	\bar{C}_{2}		
1	$3: \bar{C}_{3}$			
C_{1}	$(1,1,1)$	$(0,1,0)$		
\bar{C}_{1}	$(1,0,0)$	$(1,1,0)$		
1	C_{2}	\bar{C}_{2}		
C_{1}	$(0,0,1)$	$(0,1,1)$		
\bar{C}_{1}	$(1,0,1)$	$(1,1,1)$		

Compact representation: $G=(A, V, \pi, \Phi)$ with

- $A=\{1,2, \ldots, n\}$, set of players,
- $V=\left\{C_{1}, \ldots, C_{n}\right\}$, set of propositional variables,
$\bullet \forall i \in\{1, \ldots, n\}, \pi_{i}=\left\{C_{i}\right\}$, control assignment function, and
$\bullet \forall i \in\{1, \ldots, n\}, \varphi_{i}=\left\{\left(C_{1} \wedge C_{2} \wedge \ldots \wedge C_{n}\right) \vee \neg C_{i}\right\}$, utility functions

Pure-strategy Nash equilibria (PNE)
-Main Notions \qquad
Dominated strategies
Let $s_{i} \in 2^{\pi_{i}}$ be a strategy for player i.

- s_{i} is strictly dominated if there exists another strategy s_{i}^{\prime} such that, whatever the strategies of the other players, s_{i}^{\prime} assures to player i a strictly bigger utility than $s_{i}: \exists s_{i}^{\prime} \in 2^{\pi_{i}}$ s.t. $\forall s_{-i} \in 2^{\pi_{-i}}$, $u_{i}\left(s_{i}, s_{-i}\right)<u_{i}\left(s_{i}^{\prime}, s_{-i}\right)$.
- s_{i} is weakly dominated if $\exists s_{i}^{\prime} \in 2^{\pi_{i}}$ s.t. $\forall s_{-i} \in 2^{\pi_{-i}}, u_{i}\left(s_{i}, s_{-i}\right) \leq u_{i}\left(s_{i}^{\prime}, s_{-i}\right)$ and $\exists s_{-i} \in 2^{\pi_{-i}}$ s.t. $u_{i}\left(s_{i}, s_{-i}\right)<u_{i}\left(s_{i}^{\prime}, s_{-i}\right)$.

Elimination of dominated strategies in n-players version of prisoners' dilemma gives one result: $\left\{\overline{C_{1} C_{2} C_{3}}\right\}$.

Characterization of dominated strategies

- s_{i} strictly dominates strategy s_{i}^{\prime} if and only if: $s_{i} \models\left(\neg \exists-i: \neg \varphi_{i}\right)$ and $s_{i}^{\prime} \models\left(\neg \exists-i: \varphi_{i}\right)$
- s_{i} weakly dominates strategy s_{i}^{\prime} if and only if: $\left(\varphi_{i}\right)_{s_{i}^{\prime}} \models\left(\varphi_{i}\right)_{s_{i}}$ and $\left(\varphi_{i}\right)_{s_{i}} \not \models\left(\varphi_{i}\right)_{s_{i}^{\prime}}$.

A PNE is a strategy profile such that each player's strategy is an optimum response to the other players' strategies. $S=\left\{s_{1}, \ldots, s_{n}\right\}$ is a pure-strategy Nash equilibrium if and only if:

$$
\forall i \in\{1, \ldots, n\}, \forall s_{i}^{\prime} \in 2^{\pi_{i}}, u_{i}(S) \geq u_{i}\left(s_{-i}, s_{i}^{\prime}\right)
$$

The 3-players version of prisoners' dilemma has 2 PNE: $\left\{C_{1} C_{2} C_{3}\right\}$ and $\left\{\overline{C_{1} C_{2} C_{3}}\right\}$.

Characterization of PNE:
S is a PNE for G if and only if: $S \models \bigwedge_{i}\left(\varphi_{i} \vee\left(\neg \exists i: \varphi_{i}\right)\right)$

Complexity: Deciding whether there is a PNE in a Boolean game is Σ_{2}^{p}-complete

Complexity: Deciding whether a given strategy s_{i}^{\prime} is weakly dominated is Σ_{2}^{p}-complete.

Introduction of preferences.
Let $\operatorname{Pre}_{G}=\left\langle\succeq_{1}, \ldots, \succeq_{n}\right\rangle$ a collection of preference relations.

- S is a weak PNE (WPNE) for G iff $\forall i \in\{1, \ldots, n\}, \forall s_{i}^{\prime} \in 2^{\pi_{i}},\left(s_{i}^{\prime}, s_{-i}\right) \nsucc_{i}\left(s_{i}, s_{-i}\right)$
- S is a strong PNE (SPNE) for G iff $\forall i \in\{1, \ldots, n\}, \forall s_{i}^{\prime} \in 2^{\pi_{i}},\left(s_{i}^{\prime}, s_{-i}\right) \preceq_{i}\left(s_{i}, s_{-i}\right)$
- $N E_{\text {strong }}(G)$ and $N E_{\text {weak }}(G)$ denote respectively the set of strong and weak PNEs for G.
Prioritized goals
2 CASES
CP-nets

A prioritized goal base Σ is a collection $\left\langle\Sigma^{1} ; \ldots ; \Sigma^{p}\right\rangle$ of sets of propositional formulas.

- Σ^{j} : set of goals of priority j,
- the smaller j, the more prioritary the formulas in Σ^{j}

Discrimin preference relation $S \succ_{i}^{\text {disc }} S^{\prime}$ iff $\exists k \in\{1, \ldots, p\}$ such that: $\operatorname{Sat}\left(S, \Sigma^{k}\right) \supset \operatorname{Sat}\left(S^{\prime}, \Sigma^{k}\right)$ and $\forall j<k, \operatorname{Sat}\left(S, \Sigma^{j}\right)=\operatorname{Sat}\left(S^{\prime}, \Sigma^{j}\right)$
Leximin preference relation $S \succ_{i}^{l e x} S^{\prime}$ iff $\exists k \in\{1, \ldots, p\}$ such that: $\left|\operatorname{Sat}\left(S, \Sigma^{k}\right)\right|>\left|\operatorname{Sat}\left(S^{\prime}, \Sigma^{k}\right)\right|$ and $\forall j<k,\left|\operatorname{Sat}\left(S, \Sigma^{j}\right)\right|=\left|\operatorname{Sat}\left(S^{\prime}, \Sigma^{j}\right)\right|$.
Best-out preference relation Let $a(s)=\min \left\{j\right.$ such that $\left.\exists \varphi \in \Sigma^{j}, S \not \vDash \varphi\right\}$, with the convention $\min (\varnothing)=+\infty$. Then $S \succeq_{i}^{b o} S^{\prime}$ iff $a_{i}(S) \geq a_{i}\left(S^{\prime}\right)$.
A PG-Boolean game is a 4-uple $G=(A, V, \pi, \Phi)$, where $\Phi=\left(\Sigma_{1}, \ldots, \Sigma_{n}\right)$.

- $N E_{\text {strong }}^{\text {disc }}(G) \subseteq N E_{\text {strong }}^{l e x}(G) \subseteq N E_{\text {strong }}^{b o}(G)$,
- $N E_{\text {weak }}^{l e x}(G) \subseteq N E_{\text {weak }}^{\text {disc }}(G) \subseteq N E_{\text {weak }}^{\text {bo }}(G)$.
$G^{[1-k]}=\left(A, V, \pi, \Phi^{[1-k]}\right)$ denotes the k-reduced game of G in which all players' goals in G are reduced in their k first strata: $\Phi^{[1 \rightarrow k]}=\left\langle\Sigma_{1}^{[1 \rightarrow k]}, \ldots, \Sigma_{n}^{[1 \rightarrow k]}\right\rangle$.
Let $c \in\left\{\right.$ discr, lex, bo\}. If S is a SPNE (resp. WPNE) for $\operatorname{Pre} f_{G^{[1-k]}}^{c}$ of the game $G^{[1-k]}$, then S is a SPNE (resp. WPNE) for $\operatorname{Pref}_{G^{[1 \rightarrow(k-1)]}}^{c}$ of the game $G^{[1 \rightarrow(k-1)]}$.

Let $G=(A, V, \pi, \Phi)$ with $A=\{1,2\}, V=\{a, b, c\}, \pi_{1}=\{a, c\}, \pi_{2}=\{b\}, \Sigma_{1}=\langle a ;(\neg b, c)\rangle, \Sigma_{2}=$ $\langle(\neg b, \neg c) ; \neg a\rangle$.

- Discrimin and Leximin: $N E_{\text {weak }}^{\text {disc }}(G)=N E_{\text {strong }}^{\text {disc }}(G)=\{a \bar{b} c\}$
- Best Out: $N E_{\text {weak }}^{b o}(G)=N E_{\text {strong }}^{b o}(G)=\{a b c, a \bar{b} c\}$
$\mathcal{N}=\langle\mathcal{G}, \mathcal{T}\rangle$ is a CP-net on V, where \mathcal{G} is a directed graph over V, and \mathcal{T} is a set of conditional preference tables $C P T\left(X_{j}\right)$ for each $X_{j} \in V$.
Each $C P T\left(X_{j}\right)$ associates a total order \succ_{p}^{j} with each instantiation $p \in 2^{P a\left(X_{j}\right)}$.
A CP-boolean game is a 4-uple $G=(A, V, \pi, \Phi)$, where $\Phi=\left\langle\mathcal{N}_{1}, \ldots, \mathcal{N}_{n}\right\rangle$. Each \mathcal{N}_{i} is a CP-net on
$\stackrel{V}{\text { Let }} G=(A, V, \pi, \Phi)$ be a CP-boolean game such the graphs \mathcal{G}_{i} are all identical $\left(\forall i, j, \mathcal{G}_{i}=\mathcal{G}_{j}\right)$ and acyclic. Then G has one and only one strong PNE.
acyclic. Then G has one and only one strong PNE.
For each player i, \mathcal{G}_{i} is denoted by $\left(V, A r c_{i}\right)$, with $A r c_{i}$ being the set of edges of i 's CP-net.
- The union graph of G is defined by $\mathcal{G}=\left(V, \operatorname{Ar} c_{1} \cup \ldots \cup \operatorname{Ar} c_{n}\right)$.
- The normalized game equivalent to G, denoted by $G^{*}=\left\{A, V, \pi, \Phi^{*}\right\}$, is the game obtained from G by rewriting, where
- the graph of each player's CP-net has been replaced by the graph of the union of CP-nets of G
- and the CPT of each player's CP-net are modified in order to fit with the new graph, keeping the same preferences
Let $G=(A, V, \pi, \Phi)$ be a CP-boolean game. If the union graph of G is acyclic then G has one and only one SPNE.
$G=(A, V, \pi, \Phi)$ where $A=\{1,2\}, V=\{a, b, c\}, \pi_{1}=\{a, b\}, \pi_{2}=\{c\}, \mathcal{N}_{1}$ and \mathcal{N}_{2} are represented

N_{2}
Using these partial pre-orders, Nash equilibria are: $N E_{\text {strong }}=N E_{\text {weak }}=\{a b c\}$. It is possible to verify then the union graph is acyclic.

$\mathcal{N}_{2} \quad$| $a \wedge b$ | $c \succ \bar{c}$ |
| :--- | :--- |
| $a \wedge \bar{b} \bar{c} \succ c$ | |
| $\bar{a} \wedge b c \succ \bar{c}$ | |
| $\bar{a} \wedge \bar{b}$ | $\bar{c} \succ c$ |

$\bar{a} \wedge \bar{b} \bar{c} \succ c$

