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Abstract

Game theory is a widely used formal model for studying strategical in-
teractions between agents.Boolean games[23, 22] yield a compact rep-
resentation of 2-player zero-sum static games with binary preferences: an
agent’s strategy consists of a truth assignment of the propositional variables
she controls, and a player’s preferences are expressed by a plain propositional
formula. These restrictions (2-player, zero-sum, binary preferences) strongly
limit the expressivity of the framework. We first generalizethe framework
to n-player games which are not necessarily zero-sum. We give simple char-
acterizations of Nash equilibria and dominated strategies, and investigate the
computational complexity of the associated problems. Then, we relax the
last restriction by coupling Boolean games with a representation, namely,
CP-nets.
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1 Introduction

Game theory attempts to formally analyze strategic interactions between agents.
Roughly speaking, a non-cooperative game consists of a set of agents(or players),
and for each agent, a set of possible strategies and a utility function mappingevery
possible combination of strategies to a real value. In this paper we consideronly
one-shotgames, where agents choose their strategies in parallel, without observing
the others’ choices.
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While there are several different formats for formally specifying a game (most
notably extended form and normal form, which coincide as far as static games
are concerned), utility functions are usually represented explicitly, by listing the
values for each combination of strategies (an exception being the recent framework
of graphical games, which we discuss later in the paper). However, the number of
utility values which must be specified, that is, the number of possible combinations
of strategies, is exponential in the number of players, which renders such an explicit
way of representing the preferences of the players unreasonable when the number
of players is not very small. This becomes even more problematic when the setof
strategies available to an agent consists in assigning a value from a finite domain to
each of a given set of variables (which is the case in many real-world domains). In
this case, representing utility functions explicitly leads to a description whose size
is exponential both in the number of agents (n×2n values forn agents each with
two available strategies) and in the number of variables controlled by the agents
(2×2p×2p values for two agents each controllingp Boolean variables). Thus, in
all these cases, specifying players’ preferences explicitly is clearly unreasonable,
both because it would need exponential space, and because studying these games
(for instance by computing solution concepts such as pure-strategy Nashequilibria)
would require accessing all of these utility values at least once and hencewould
take time exponential in the numbers of agents and variables in all cases.
How can this be dealt with? A way out consists in using a language for repre-
senting individual preferences (either preference relations or utility functions) on
combinatorial (multivariable) domains in astructuredandcompactway. These lan-
guages have been actively studied recently, especially in the AI community. They
exploit to a large extent the structural properties of preferences (such as conditional
independencies between variables). The relevance of compact preference represen-
tation on multivariable domains to the specification and the study of games looks
obvious (in the simple case where each agent has only two possible strategies, then
there is exactly one binary variable per agent), and yet this connection has rarely
been exploited (up to a few exceptions, which we discuss in Section 6).
In this paper, we focus without much loss of generality on the case in which each
agent has control over a set ofBoolean(binary) variables. Not only does this
simplify the presentation, but it allows us to exploit logical languages for prefer-
ence representation. It is also consistent with previous work onBoolean games
[23, 22, 14]. In Section 7 we discuss in more details to which extent this assump-
tion induces a loss of generality.

The simplest possible way to represent preferences in Boolean games consists in
assuming that each player has a specific propositional formula that she wants to be
satisfied. Under this assumption, each player has adichotomouspreference (either
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she is satisfied or not, with no possible gradation). Furthermore, Boolean games as
defined in [23, 14] are two-player zero-sum games where the players’utilities are
binary and specified by a single propositional formulaϕ (theBoolean formof the
game) expressing the goal of player number 1. These three restrictions (2-player,
zero-sum, binary preferences) strongly limit the expressivity of the framework.
They were first relaxed in Chapter 8 of [22], which we discuss in detail inSection
4.2.
In Section 3 we stick to the assumption that preferences are dichotomous (but re-
lax the other two restrictions), and revisit Boolean games by defining the agents’
preferences as an arbitraryn-tuple of propositional formulas (see [4]). Then, we
focus on the third restriction.Whereas a single propositional formula (goal)ϕ can-
not express more than a binary preference relation on interpretations (models of
ϕ are strictly better than models of¬ϕ), expressing arbitrary (non-binary) pref-
erences within a propositional framework is possible, making use of a more so-
phisticated propositional language for compact preference representation. Clearly,
many choices for such a language are possible, and for each of them, it isworth
giving characterizations of Nash equilibria and other solution concepts aswell as
addressing complexity issues. After briefly discussing the proposal in Chapter 8
of [22] and some of its possible generalizations, we focus on the languageof CP-
nets, for several reasons: first, this is one of the most popular and well-developed
compact representation language (both because it is easy to elicit preferences rep-
resented by CP-nets, and because of its computational properties); andsecond,
because this language has enoughstructureto allow for interesting characteriza-
tions of our solution concepts. The good point with ordinal preferencesis that they
are often easier to elicit, mainly for cognitive reasons. The bad point is thatsome
game-theoretical concepts, such as mixed-strategy Nash equilibria, neednumeri-
cal preferences. However, some do not, including pure-strategy Nash equilibria
and dominated strategies: these notions only require ordinal preferences.

Some background is given in Section 2. In Section 3, we give a (simplified) de-
scription of Boolean games and generalize them so as to represent non zero-sum
games with an arbitrary number of players (but we keep the assumption that each
player’s preferences are represented by a unique propositional formula, inducing a
binary utility function). Then, we show how well-known tools from propositional
logic can be used so as to give simple characterizations of two of the most im-
portant game-theoretical notions, namely pure-strategy Nash equilibria and dom-
inated strategies, and so as to derive complexity results for their computation.In
Section 4, Boolean games are coupled with non-dichotomous preferences: we in-
troduce some languages for compact preference representation, andthen we briefly
discuss Harrenstein’s proposal given in Chapter 8 of [22] and some of its generali-
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sation. Boolean games are then coupled with propositionalized CP-nets in Section
5. Sections 6 and 7 respectively address related work and further issues. Proofs are
given in Appendix A.

2 Background

LetV = {a,b, . . .} be a finite set of propositional variables and letLV be the propo-
sitional language built fromV and Boolean constants⊤ (true) and⊥ (false) with
the usual connectives. Formulas ofLV are denoted byϕ,ψ, etc. A literal is a vari-
ablex of V or the negation of a variable. Aterm is a consistent conjunction of
literals. Var(ϕ) (resp. Lit (ϕ)) denotes the set of variables (resp. literals) occur-
ing in the formulaϕ. A formula ϕ is in DNF when it is written as a disjunction
(possibly empty) of terms.
2V is the set of the interpretations forV, with the usual convention that forM ∈ 2V

andx∈V, M gives the valuetrue to x if x∈M andfalseotherwise.
Let X ⊆V. 2X is the set ofX-interpretations. A partial interpretation(for V) is an
X-interpretation for someX ⊆V. Partial interpretations are denoted by listing all
variables ofX, with a ¯ symbol when the variable is set to false: for instance, let
X = {a,b,d}, then theX-interpretationM = {a,d} is denotedabd. If {V1, . . . ,Vp}
is a partition ofV and{M1, . . . ,Mp} are partial interpretations, whereMi ∈ 2Vi ,
(M1, . . . ,Mp) denotes the interpretationM1∪ . . .∪Mp.
If M is an interpretation forV andVar(ϕ) ⊆ V, we write M |= ϕ if M satisfies
ϕ. For two formulasϕ,ψ, ϕ |= ψ denotes the classical consequence relation, that
is, ϕ |= ψ if every model ofϕ is a model ofψ. If M is a partial interpretation of
Var(ϕ), we writeM |= ϕ if ϕ is satisfied by every interpretation forVar(ϕ) which
agrees withM; equivalently,M |= ϕ if the conjunction of all literals assigned true
by M logically entailsϕ. Due to this equivalence, we use the same notation for
entailment and satisfaction, as is standard in propositional logic.
Forv∈V, we denote byv← x the fact that the variablev is assigned to the valuex.
The partial instantiation of a formulaϕ by anX-interpretationMX is denoted by:

(ϕ)MX = ϕv∈MX←⊤,v∈X\MX←⊥

Let ψ be a propositional formula. A termα is animplicantof ψ iff α |= ψ holds.α
is aprime implicantof ψ iff α is an implicant ofψ and there is no implicantα ′ of
ψ with Lit (α ′)⊂ Lit (α). PI(ψ) denotes the set of all the prime implicants ofψ. If
X ⊆V, anX-prime implicant ofψ is a prime implicant ofψ such thatVar(α)⊆ X.
PIX(ψ) denotes the set of all theX-prime implicants ofψ.
Let ϕ ∈ LV andX ⊆V. Theforgettingof X in ϕ [33], denoted by∃X : ϕ, is defined
inductively by:
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(i) ∃∅ : ϕ = ϕ
(ii) ∃{x} : ϕ = ϕx←⊤∨ϕx←⊥

(iii) ∃(X∪{x}) : ϕ = ∃X : (∃{x} : ϕ).

∃X : ϕ is the logically strongest consequence ofϕ containing only variables from
V \X [29, 32]. In other terms, it is the projection ofϕ onX. We also need the dual
of forgetting defined by∀X : ϕ≡ ¬∃X : ¬ϕ.
Lastly, if ϕ is a propositional formula, thenDepVar(ϕ) is the set of propositional
variables on whichϕ depends [29], defined by: forx ∈ V, x ∈ DepVar(ϕ) if and
only if ϕx:=⊤ 6≡ ϕx:=⊥, that is if the two propositional formulas obtained fromϕ by
substitutingx by⊤ and by⊥ define distinct propositional functions.

3 n-player Boolean games with binary preferences

Given a set of propositional variablesV, a Boolean game onV [23, 22] is a zero-
sum game with two players (1 and 2), where the actions available to each player
consist in assigning a truth value to each variable in a given subset ofV. The utility
functions of the two players are represented by a propositional formulaϕ built from
the variables inV and called theBoolean formof the game.ϕ represents the goal
of player 1: her payoff is 1 whenϕ is satisfied, and 0 otherwise. Since the game is
zero-sum1, the goal of player 2 is¬ϕ.2

Example 1
Consider V= {a,b,c}. Player1 controls a and c while2 controls b.
Player 1’s goal is ϕ1 = (a↔ b)∨ (¬a∧ b∧¬c) and therefore,2’s goal is ϕ2 =
¬ϕ1≡ (¬a∧b∧c)∨ (a∧¬b).
The normal form of this game is depicted here (in each(x,y), x—resp. y—represents
the payoff of player1—-resp.2):

1Stricto sensu, the obtained games are not zero-sum, but constant-sum(the sum of utilities being
1) – the difference is irrelevant and we use the terminology “zero-sum”nevertheless.

2The original definition [23] is inductive: a Boolean game consists of a finitedynamic game.
We use here the equivalent, simpler definition of [14], who showed that this tree-like construction is
unnecessary.
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H

H
H

HH
1

2
b b

ac (1, 0) (0, 1)

ac (1, 0) (0, 1)

ac (0, 1) (1, 0)

ac (1, 0) (1, 0)

We now give a more general definition of a Boolean game, which may have any
number of players and is not necessarily zero-sum.

Definition 1 (Boolean game)
An n-player Boolean gameis a 4-tuple(N,V,π,Φ), where N= {1,2, . . . ,n} is
a set of players, V is a set of propositional variables (calleddecision variables),
π : N 7→ 2V is a control assignment function, andΦ = 〈ϕ1, . . . ,ϕn〉 is a collection
of formulas of LV .

The control assignment functionπ maps each player to the variables she controls.
For the sake of notation, the set of all the variables controlled byi is written πi

instead ofπ(i). We require that each variable be controlled by one and only one
agent, i.e.,{π1, . . . ,πn} forms a partition ofV.
Our notion of Boolean games corresponds to the specialization of distributedeval-
uation games defined in Chapter 8 of [22] – see Section 4.2 for more details. It
is easily seen that Boolean games as studied by [23, 22, 14] are a specialcase of
our n-player Boolean games, obtained by making the following two assumptions:
n = 2 (two players) andϕ2 = ¬ϕ1 (zero-sum).

Definition 2 (Strategy, strategy profile)
Let G= (N,V,π,Φ) be a Boolean game. Astrategy si for a player i in G is aπi-
interpretation. Astrategy profile s for G is a n-tuple s= (s1,s2, . . . ,sn) where for
all i, si ∈ 2πi .

In other words, a strategy fori is a truth assignment for all the variablesi controls.
Note that since{π1, . . . ,πn} forms a partition ofV, a strategy profiles defines an
(unambiguous) interpretation forV. Slightly abusing notation and words, we write
s∈ 2V , to refer to the value assigned bys to some variable, etc.Sdenotes the set
of all strategy profiles forG.

More generally, we could add to Boolean gamesconstraintsrestricting the set of
individual strategies: a Boolean game would then contain a collection of proposi-
tional formulae{γi , i ∈ N}, where, for eachi ∈ N, γi is a propositional formula of
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Lπ(i). The setSi of strategies available to playeri would then be the set of partial
interpretations in 2πi that satisfyγi . For the sake of simplicity, we choose to omit
constraints. Most of our results can easily be generalized to Boolean games with
constraints (for those that cannot we explicitly mention it).

In the rest of the paper we make use of the following notation, which is standard
in game theory. LetG = (N,V,π,Φ) be a Boolean game withN = {1, . . . ,n}, and
s= (s1, . . . ,sn), s′ = (s′1, . . . ,s

′
n) be two strategy profiles.s−i denotes the projection

of s ontoN\{i}: s−i = (s1,s2, . . . ,si−1,si+1, . . . ,sn).
Similarly, π−i denotes the set of the variables controlled by all players excepti:
π−i = V \πi .
Finally, (s−i ,s′i) denotes the strategy profile obtained froms by replacingsi with s′i
without changing the other strategies:(s−i ,s′i) = (s1,s2, . . . ,si−1,s′i ,si+1, . . . ,sn).
Players’ utilities in Boolean games are binary: playeri is satisfied by a strategy
profile (and gets utility 1) if and only if her goalϕi is satisfied, and she gets util-
ity 0 otherwise. Therefore, the goals{ϕi , i = 1, . . . ,n} play the role of the utility
functionsu1, . . . ,un.3

Example 2 We consider here a Boolean n-player (simplified) version of the well-
known prisoners’ dilemma. n prisoners (denoted by1, . . . ,n) are kept in separate
cells. The same proposal is made to each of them: “Either you cover for your
accomplices (denoted by Ci , i = 1, . . . ,n) or you denounce them (¬Ci , i = 1, . . . ,n).
Denouncing makes you free while your partners will be sent to prison (except those
who denounced you as well; these ones will also be free). But if none of you chooses
to denounce, everyone will be free4”.
Here is the representation of this game in normal form for n= 3:

strategy of3: C3
H

H
H

H
HH

1
2

C2 C2

C1 (1,1,1) (0,1,0)

C1 (1,0,0) (1,1,0)

strategy of3: C3
H

H
H

H
HH

1
2

C2 C2

C1 (0,0,1) (0,1,1)

C1 (1,0,1) (1,1,1)

So, for n prisoners, we have a n-dimension matrix, therefore2n n-tuples must be
specified.

3Alternatively, we can define, for every playeri, the (binary) utility function induced by her goals
ϕi by: for every strategy profiles, ui(s) = 0 if s |= ¬ϕi andui(s) = 1 if s |= ϕi .

4Notice that the limitation to binary preferences make it impossible to express that a player prefers
the situation where he denounces and the others cooperate to the situation where everyone cooperates,
and the latter to a situation where everyone denounces. In order to do so we need a more sophisticated
language – see Section 5.
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This game can be expressed much more compactly by the following Boolean game
G = (N,V,π,Φ), where N= {1,2, . . . ,n}, V = {C1, . . . ,Cn}, ∀i ∈ {1, . . . ,n},πi =
{Ci}, and∀i ∈ {1, . . . ,n},ϕi = (C1∧C2∧ . . .∧Cn)∨¬Ci .

Here, each player i has two possible strategies: si = Ci and s′i = Ci .
There are 8 strategy profiles for G, including C1C2C3 andC1C2C3.
Under C1C2C3, players 1, 2 and 3 have their goal satisfied, whileC1C2C3 satisfies
only the goal of player1.

Note that this choice of binary utilities implies a loss of generality, but it provides
a good starting point for the study of Boolean games, and it will give us lower
complexity bounds. See Section 5 for less restrictive approaches.

Definition 3 (Winning strategy)
Let G= (N,V,π,Φ) be a Boolean game, withΦ = 〈ϕ1, . . . ,ϕn〉 and N= {1, . . . ,n}.
Strategy si is a winning strategy for i if ∀s−i ∈ 2π−i ,(s−i ,si) |= ϕi .

Proposition 1
Let G= (N,V,π,Φ) be a Boolean game. Player i∈ N has a winning strategy iff
PIπi (ϕi) 6= ∅.

Clearly enough, deciding the existence of a winning strategy for a given player is
an instance of the controllability problem [5, 30, 40] and can be reduced tothe
resolution of aQBF2,∃ instance.

3.1 Nash equilibria

Pure-strategy Nash equilibria (PNE) forn-player Boolean games are defined ex-
actly as usual in game theory (see for instance [35]), keeping in mind that utility
functions are induced from players’ goalsϕ1, . . . ,ϕn. A PNE is a strategy pro-
file in which each player’s strategy is an optimum response to the other players’
strategies.

Definition 4 (Pure-strategy Nash equilibria)
Let G= (N,V,π,Φ) be a Boolean game with N= {1, . . . ,n}. s= (s1, . . . ,sn) is
a pure-strategy Nash equilibrium (PNE) if and only if∀i ∈ {1, . . . ,n},∀s′i ∈
2πi ,ui(s)≥ ui(s−i ,s′i).

Example 3 Let G= (N,V,π,Φ) be the Boolean game defined by V= {a,b,c},
N = {1,2,3}, π1 = {a}, π2 = {b}, π3 = {c}, ϕ1 = ¬a∨ (a∧b∧¬c), ϕ2 = (a↔
(b↔ c)) andϕ3 = ((a∧¬b∧¬c)∨ (¬a∧b∧c)).
Player1 has a winning strategy, namely setting a to false. It can be checked that
the strategy profile s= abc is the only PNE of G.
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In some examples, several PNE exist: in Ex. 1, the PNE areabc andabc, and in
Ex. 2, the PNE areC1C2C3 andC1C2C3.

We now give simple characterizations of pure-strategy Nash equilibria in Boolean
games, starting with the following one:

Proposition 2
Let G= (N,V,π,Φ) be a Boolean game and let s∈ 2V . s is a pure-strategy Nash
equilibrium for G iff for all i∈ N, s 6|= ϕi implies s−i |= ¬ϕi .

Example 3, continued: The strategy profile s= abc is a PNE (notice that it is
the only one). Indeed, we have:

1. s= abc |= ϕ1 = ¬a∨ (a∧b∧¬c)

2. s= abc |= ϕ2 = (a↔ (b↔ c))

3. s−3 = ab |= ¬ϕ3 = ((¬a∨b∨c)∧ (a∨¬b∨¬c))

As s−i |= ¬ϕi means that¬ϕi follows from s−i whateverthe instantiation of the
variables controlled by playeri, the previous characterization of PNE can be sim-
plified again, using the forgetting operator. For the sake of notation, we use the
notation∃i : ϕi instead of∃πi : ϕi .

Proposition 3
Let s∈ 2V . s is a pure-strategy Nash equilibrium for G if and only if s|=

V

i(ϕi ∨
(¬∃i : ϕi)).

This result can be seen as the syntactical counterpart of Proposition 9.5.2 and
Corollary 9.5.3 in [22] (the latter result being established in the more generalset-
ting of distributed evaluation games – see Section 4.2).

Example 3, continued: Let again s= abc.∃3 : ϕ3 = ((a∧¬b∧¬⊤)∨ (¬a∧b∧
⊤))∨ ((a∧¬b∧¬⊥)∨ (¬a∧b∧⊥)) = (¬a∧b)∨ (a∧¬b). We easily check that
s |= ϕ1∧ϕ2∧¬∃3 : ϕ3.
In the particular case of 2-player zero-sum Boolean games, we recover the well-
known fact that pure-strategy Nash equilibria coincide with winning strategies for
one of the players.

Proposition 4
If G is a 2-player zero-sum Boolean game, s= (s1,s2) is a pure-strategy Nash
equilibrium iff s1 is a winning strategy for1 or s2 is a winning strategy for2.
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This fact enables us to easily determine the complexity of deciding whether there
is a pure-strategy Nash equilibrium in a given Boolean game.
Recall thatΣp

2 = NP NP is the class of all the languages that can be recognized in
polynomial time by a nondeterministic Turing machine equipped withNP oracles
(see for instance [36]).

Proposition 5
Deciding whether there exists a pure-strategy Nash equilibrium in a Booleangame
is Σp

2-complete. Completeness holds even under the restriction to 2-player zero-
sum games.

The fact that this problem lies at the second level of the polynomial hierarchy can
intuitively be explained by the presence of two independent sources of complexity:
the search for the “good” strategy profiles, and the test whether this strategy profile
is indeed a pure-strategy Nash equilibrium.
This result can be positioned with respect to other results about the complexity of
the existence of Nash equilibria in compactly represented games. [20] showthat
in a graphical game where the utility function of each player depends only ona
number of variables bounded by a constant, the existence of a PNE isNP-complete.
This result heavily depends on this “locality” assumption that each player’sutility
depends on a small number of variables controlled by other players. A similar
assumption in our framework leads to a similar complexity gap: indeed, for the
family of Boolean games such that for some constantK, |Var(ϕi)| ≤ K for everyi,
deciding whether there exists a PNE is inNP (we can see from Proposition 3 that
the number of variables we have to eliminate is constant, so the computation of
s |=

V

i(ϕi ∨ (¬∃i : ϕi)) is polynomial).

We now briefly investigatesyntacticalrestrictions on the formulas representing the
players’ goals which make the problem easier. We are especially interestedin DNF
formulas. Recall that any Boolean function can be represented by sucha formula,
and thus that this is a syntactical but not a semantical restriction5. A DNF goal
intuitively represents an enumeration of “winning situations”, where a situation is
a partial combination of strategies.
As far as 2-player zero-sum games are concerned, since deciding thevalidity of
∃N,∀B,Φ, a QBF2,∃ formula, isΣP

2-complete even ifΦ is restricted to be in DNF,
Proposition 5 holds even if player 1’s goal is restricted to be in DNF (and player
2’s goal is implicit). However, when we explicitly represent the goal of each player
in DNF, the complexity of the problem goes down to NP, as the next proposition
shows.

5However, of course, the equivalent DNF representation of a formulamay be exponentially larger
than this formula.
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Proposition 6
Let G be a Boolean game. If the goalϕi of every player is in DNF, then deciding
whether there is a pure-strategy Nash equilibrium is NP-complete. Completeness
holds even if we restrict the number of players to2.

When restricting to 2-player games, the complexity of deciding whether a game has
a PNE can even be lowered to P. This is the case if goals are represented in(i) Horn-
renamable DNF, (ii) affine form, (iii) 2CNF or (iv) monotone CNF with the same
polarity for each variable in both players’ goals. This is ensured by tractability
of projection in these cases, and algorithms similar to those for abduction [41,
Section 6] can be used.
The case of goals expressed by Horn-renamable DNFs encompasses that of mono-
tone DNF. That is, the case where each variable is monotone for one player, but
may have opposite polarity for both players. This means that two players canex-
press preferred combinations of variables (DNF) with opposite preferences over
individual variables (e.g., there is no case where player 1 prefersx to¬x and where
player 2 prefers¬x to x), and one can decide whether there is a PNE in polynomial
time, that is, a tradeoff between their “opposite” preferences.

3.2 Dominated strategies

Another key concept in game theory isdominance. A strategysi for playeri strictly
dominatesanother strategys′i if si does strictly better thans′i against all possible
combinations of other players’ strategies, andweakly dominates s′i if si does at least
as well against all possible combinations of other players’ strategies, andstrictly
better against at least one. The key idea is that dominated strategies are not useful
and can be eliminated (iteratively, until a fixpoint is reached). This process relies
on the hypothesis that every player behaves in a rational way and knowsthat the
other players are rational.

Definition 5 (Strictly/weakly dominated strategies)
Let si ∈ 2πi be a strategy for player i. si is strictly dominated if ∃s′i ∈ 2πi s.t.
∀s−i ∈ 2π−i , ui(si ,s−i) < ui(s′i ,s−i).
si is weakly dominated if ∃s′i ∈ 2πi s.t. ∀s−i ∈ 2π−i , ui(si ,s−i) ≤ ui(s′i ,s−i) and
∃s−i ∈ 2π−i s.t. ui(si ,s−i) < ui(s′i ,s−i).

The following simple example shows the interest of eliminating dominated strate-
gies.

Example 4 Let G= (N,V,π,Φ) be the Boolean game defined by V= {a,b}, N =
{1,2}, π1 = {a}, π2 = {b}, ϕ1 = ϕ2 = a∧¬b.
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This game has two PNEs: strategy profiles ab andab. Nevertheless, only one of
these equilibria is interesting. Indeed, if1 and2 are rational, they will both choose
strategy profile ab, which makes both of them win. This result may be obtained by
eliminating weakly dominated strategies: for player1 (resp. 2), strategy a (resp.
b) weakly dominates strategya (resp. b).

This interest also appears in Example 2 (the resulting strategy profile isC1C2C3),
but not in Example 1 (the resulting strategy profiles are exactly the PNE). Itis a
well-known fact from game theory that there is no strictly dominated strategy in
any Nash equilibrium, whereas a weakly dominated strategy can be presentin one
(see for instance [24]).

Example 5 G = (N,V,π,Φ), where V= {a,b}, N = {1,2}, π1 = {a}, π2 = {b},
ϕ1 = (a∧b)∨¬a, ϕ2 = a∧b.
This game has three PNEs: strategy profiles ab,ab andab. However, the strategy a
is weakly dominated by the strategya for the player1, even if it appears in a PNE.

Moreover, the order of elimination of strictly dominated strategies does not affect
the final result, which is no longer true for weakly dominated strategies. Since the
latter negative result holds for general games (with no restriction on the players’
utility functions), it is worth wondering whether it still holds for Boolean games.
It actually does, as shown by the following example.

Example 6 G = (N,V,π,Φ), where V= {a,b}, N = {1,2}, π1 = {a}, π2 = {b},
ϕ1 = a∧ b, ϕ2 = a∧¬b. For player 1 (resp. 2), strategy a (resp.b) weakly
dominates strategya (resp. b). If we first eliminatea, thenb weakly dominates b
and only one strategy profile remains, namely ab. Now, if we first eliminate b, then
a no longer dominatesa any more, and two strategy profiles remain, namely ab
andab.

We now study properties and characterizations of dominated strategies. A first
result, that we just state as a remark, is that in a Boolean game, if strategysi strictly
dominates strategys′i , thensi is a winning strategy fori. Stated in more formal
terms,si strictly dominates strategys′i if and only if:

si |= (¬∃− i : ¬ϕi) ands′i |= (¬∃− i : ϕi)

This shows that, due to the restriction to binary utilities, the notion of strict dom-
inance degenerates and loses its interest. This is however not the case for weak
dominance. We have the following simple characterization of weak dominance:
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Proposition 7
Strategy si weakly dominatesstrategy s′i if and only if(ϕi)s′i

|= (ϕi)si and(ϕi)si 6|=
(ϕi)s′i

.

For example, we have for the game presented in Example 6:(ϕ1)a = b and(ϕ1)a =
⊥. So,(ϕ1)a |= (ϕ1)a, and(ϕ1)a 6|= (ϕ1)a : as seen in Example 6,a weakly domi-
natesa.

This characterization allows us to derive the following complexity result.

Proposition 8
Deciding whether a given strategy s′i is weakly dominated isΣp

2-complete. Hard-
ness holds even ifϕi is restricted to be in DNF.

Characterizing strategies that survive iterated elimination of weakly dominated
strategies looks much more complicated, as well as finding the complexity of de-
ciding whether a given strategy survives any iterated elimination of weakly domi-
nated strategies. This is left for further research.

4 Coupling Boolean games and compact preference rep-
resentation languages: principles and first examples

4.1 Towards Boolean games with non-dichotomous preferences

The choice of dichotomous utilities (where agents can only express plain satisfac-
tion or plain dissatisfaction, with no intermediate levels) is an important loss of
generality. Fortunately, this restriction can easily be relaxed, at least from the point
of view of generalizing definitions. It suffices to replace the preference component
of a Boolean game by an input expressed in a (propositional) language for compact
preference representation. Recall that languages for preference representation may
be eitherordinal (i.e., expressed by weak orders) ornumerical(i.e., expressed by
utility functions). For the sake of the exposition the discussion below supposes that
preferences are ordinal (the case for numerical preferences is similar).
A preference relation� is a reflexive and transitive binary relation (not necessarily
complete) onS. The strict preference≻ associated with� is defined as usual by
s≻ s′ if and only if s� s′ and nots′ � s.
Let L be a propositional language for compact representation of ordinal prefer-
ences, equipped with a functionInduceL that maps any input ofL to a preference
relation� on 2V . An L-Boolean gameis defined to be a 4-upleG = (N,V,π,Φ),
whereN = {1, . . . ,n}, V andπ are as before andΦ = 〈Φ1, . . . ,Φn〉, where for each
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i, Φi is a compact representation, inL, of the preference relation�i of agenti on
S, that is,Induce(Φi) =�i . We letPre fG = 〈�1, . . . ,�n〉.
Since most propositional languages for compact ordinal preference representation
can be used to represent partial preference relations, we start by redefining pure-
strategy Nash equilibria and dominated strategies, since the usual definition of
these notions assume that players’ preferences are complete.
We first have to definetwo notions of PNEs, a weak one and a strong one (these
notions correspond respectively to the notions of maximal and maximum equilibria
in [22]).

Definition 6 (Weak, strong Nash equilibrium)
Let G= (N,V,π,Φ) and Pre fG = 〈�1, . . . ,�n〉 the collection of preference rela-
tions on S induced fromΦ. Let s= (s1, . . . ,sn) ∈ S.
s is aweak PNE(WPNE) for G iff∀i ∈ {1, . . . ,n}, ∀s′i ∈ 2πi ,(s′i ,s−i) 6≻i (si ,s−i).
s is astrong PNE (SPNE) for G iff∀i ∈ {1, . . . ,n}, ∀s′i ∈ 2πi ,(s′i ,s−i)�i (si ,s−i).
NEs(G) and NEw(G) denote respectively the set of strong and weak6 PNEs for G.

Clearly, any SPNE is a WPNE, that is,NEs(G)⊆ NEw(G).

The notions of dominated strategies, initially defined with binary utilities (Defini-
tion 5), have to be refined too.

Definition 7 (Strictly/weakly dominated strategies)
Let si ∈ 2πi be a strategy for player i, and�i her preference relation on S.
si is strictly dominated if ∃s′i ∈ 2πi s.t.∀s−i ∈ 2π−i , (si ,s−i)≺i (s′i ,s−i).
si is weakly dominated if ∃s′i ∈ 2πi s.t.∀s−i ∈ 2π−i , (si ,s−i)�i (s′i ,s−i) and∃s−i ∈
2π−i s.t. (si ,s−i)≺i (s′i ,s−i).

The introduction of partial preferences allows us to introduce a new notionof dom-
inated strategies. This new notion is very weak: all strategies can be partially
dominated.

Definition 8 (Partially dominated strategies)
Let si ∈ 2πi be a strategy for player i, and�i her preference relation on S.
si is partially dominated if ∃s′i ∈ 2πi s.t.∀s−i ∈ 2π−i ,(si ,s−i) 6≻i (s′i ,s−i) and∃s−i ∈
2π−i s.t. (si ,s−i)≺i (s′i ,s−i)

6There is an interesting equivalent way of defining weak and strong Nashequilibria. A partial
preference relation�i can be identified with the set of allExt(�i) of complete preference relations
that extend it, and an-uple of partial preference relationsP = 〈�1, . . . ,�n〉 is then identified with
the setExt(P) of all n-uples of complete preference relations〈⊒1, . . . ,⊒n〉 such that for everyi, ⊒i
extends�i . Formally, Ext(P) = Ext(�1)× . . .×Ext(�n). Finally, let G be a Boolean gameG,
thens is a strong (respectively weak) Nash equilibrium forG iff s is a Nash equilibrium for every
(respectively, at least one) game whose preferential component isin Ext(P).
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If �i is a total pre-order, then weakly and partially dominated strategies are equiv-
alent.

Moreover, we still have [34]:

• the order of elimination of strictly dominated strategiesdoes not affectthe
final result.

• the order of elimination of weakly and partially dominated strategiesmay
affectthe final result.

4.2 Distributed evaluation games

A first way of extending Boolean games so as to allow players’ preferences to be
non-dichotomous has been proposed in Chapter 8 of [22]. In adistributed evalua-
tion game, the preferences of a player are expressed by a finite set of propositional
formulae expressing elementary goals that she wants to see satisfied. We choose to
give a formal presentation of distributed evaluation games in our own terms.

Definition 9 (Distributed evaluation games, reformulated)
An individual goal baseis a setΣ = {ϕ1, . . . ,ϕq} of propositional formulas. A
distributed evaluation gameis a 4-uple G= (N,V,π,Φ), whereΦ = (Σ1, . . . ,Σn)
is a collection of goals bases.

The preference of a player is induced from her goal base in the following way: she
prefers a states to a states′ if the set of goals satisfied byscontains the set of goals
satisfied bys′. Formally:

Definition 10
Let Σ be a goal base. For any state s∈ S, let Sat(s,Σ) = {ϕ ∈ Σ | s |= ϕ}. The
preference relation�Σ on S induced fromΣ is defined by

s�Σ s′ iff Sat(s,Σ)⊇ Sat(s′,Σ)

Note that�Σ may not be complete. An alternative to finding a preference relation
from a goal base is to use cardinality instead of inclusion:s�Σ s′ iff |Sat(s,Σ)| ≥
|Sat(s′,Σ)|.
Now that we have a preference relation for each player, results of Subsection 4.1
apply.

The following example shows how the prisoner’s dilemma can be representedas a
distributed evaluation game.
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Example 7 Let G= (N,V,π,Φ), with N= {1,2}, V = {C1,C2}, π1 = {C1}, π2 =
{C2}, Σ1 = {C1→C2,¬C1,¬C1∧C2} andΣ2 = {C2→C1,¬C2,¬C2∧C1}.
The preference relations associated with players1 and2 are the following:

C1C2≻1 C1C2≻1 C1C2≻1 C1C2

C1C2≻2 C1C2≻2 C1C2≻2 C1C2

We can give a simple characterization of pure strategy Nash equilibrium in this
framework, which is a reformulation of Corollary 9.5.3 in [22] in our framework.

Proposition 9 Let G= (N,V,π,Φ) be a distributed evaluation game and let s∈ S.
If s is a SPNE then for all i∈ N, Sat(s,Σi) is maximal s−i-consistent.7

Note that the previous implication can be extended to an equivalence if we consider
WPNE instead of SPNE.

Example 7, continued: C1C2 is a SPNE of G: we have Sat(C1C2,Σ1) = {C2→
C1}maximal C2-consistent (because Sat(C1C2,Σ1) = /0), and Sat(C1C2,Σ2) = {C2

→C1} maximal C1-consistent.
We can check that this is the only SPNE of this game.

Let us say a word about complexity. It is easy to check that the problem ofde-
ciding whether there exists a strong or weak PNE is inΣp

2. Now, whenΣi is a
singleton, SPNEs coninde with PNEs as defined in Section 3.1. Therefore,decid-
ing whether there exists a strong pure-strategy Nash equilibrium in a Boolean game
is Σp

2-complete.

4.3 Generalizing distributed evaluation games: Boolean games and
prioritized goals

Generalizing a simple goal to a set of goals is a first step to allow to have more
expressing preferences. However, expressing preferences using set of goals does
not allow to express the relative importance of goals. A practical way to do so
is to introduce priority over goals. Thus, a simple generalisation of distributed
evaluation games is Boolean games with prioritized goals [3]. The preferences of a
single player in this framework are expressed by a set of goals orderedby a priority
relation.

7Recall that a setW ⊆ Σi is maximalsi-consistent if it is consistent withsi , and if there is no
W′ ⊆ Σi consistent withsi such thatW ⊂W′.
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A prioritized goal baseΣ is a collection〈Σ1; . . . ; Σp〉 of sets of propositional
formulas.Σ j represents the set of goals of priorityj, with the convention that the
smaller j, the more prioritary the formulas inΣ j .
Several criteria can be used in order to generate a preference relation� from Σ, as
for example thediscrimincriteria based on inclusion, or theleximincriteria based
on cardinality. We choose to skip the formal definition of these criteria, and simply
give an example where the two well-known criteria discrimin and leximin coincide.

Example 8 Prisoner’s dilemma can be translated into the following Boolean game
with prioritized goals G= (N,V,π,Φ): N = {1,2}, π1 = {C1}, π2 = {C2}, Σ1 =
〈C2;¬C1〉, Σ2 = 〈C1;¬C2〉.
The preference relations associated with players1 and 2 are the following (they
are identical with leximin or discrimin) :

C1C2≻1 C1C2≻1 C1C2≻1 C1C2

C1C2≻2 C1C2≻2 C1C2≻2 C1C2

We choose to omit details about Boolean games with prioritized goals because this
would require a significant amount of space, while we have no significantresults
other than simple generalization of results of Section 3. These results can befound
on [3].

5 Coupling Boolean games and compact preference rep-
resentation languages, a case study: CP-nets and Boolean
games

5.1 CP-nets

In this section we consider a very popular language for compact preference repre-
sentation on combinatorial domains, namely CP-nets.
This graphical model exploits conditional preferential independence in order to
structure the decision maker’s preferences under aceteris paribusassumption.
They were introduced in [8] and extensively studied in many subsequentpapers,
most notably [6, 7].
Although CP-nets generally consider variables with arbitrary finite domains,for the
sake of simplicity (and homogeneity with the rest of the paper) here we consider
only “propositionalized” CP-nets, that is, CP-nets with binary variables (note that
this is not a real loss of generality, as all our definitions and results can beeasily
lifted to the more general case of non-binary variables).
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Definition 11 (Conditional preferential independence)
Let V be a set of propositional variables and{X,Y,Z} a partition of V . X is
conditionally preferentially independent of Y given Z if and only if∀z∈ 2Z,
∀x1,x2 ∈ 2X and∀y1,y2 ∈ 2Y we have: x1y1z� x2y1z iff x1y2z� x2y2z.

For each variableX, the agent specifies a set ofparent variables Pa(X) that can
affect her preferences over the values ofX. Formally,X andV \ ({X}∪Pa(X)) are
conditionally preferentially independent givenPa(X). This information is used to
create the CP-net:

Definition 12 (CP-net)
Let V be a set of propositional variables.N = 〈G ,T 〉 is a CP-net onV, whereG
is a directed graph over V , andT is a set of conditional preference tables CPT(Xj)

for each Xj ∈V. Each CPT(Xj) associates a linear order≻ j
p with each instantia-

tion p∈ 2Pa(Xj ).

Example 9 Consider the following simple CP-net that expresses my preference
over dinner configurations. This network consists of two variables S andW, stand-
ing respectively for the soup and wine. I strictly prefer fish soup (Sf ) to vegetable
soup (Sv), while my preference between red (Wr ) and white (Ww) wine is condi-
tioned on the soup to be served: I prefer red wine if served a vegetable soup, and
white wine if served a fish soup.

W

S Sf ≻ Sv

Sf Ww≻Wr

Sv Wr ≻Ww

The preference information captured by a CP-netN can be viewed as a set of
logical assertions about a user’s preference ordering over completeassignments to
variables in the network. These statements are generally not complete, that is, they
do not determine a unique preference ordering. Those orderings consistent with
N can be viewed as possible models of the user’s preferences, and any preference
assertion that holds in all such models can be viewed as a consequence ofthe CP-
net [7].

Definition 13
LetN be a CP-net over propositional variables V, and o,o′ ∈ 2V be two interpre-
tations (also called outcomes). o≻ o′ is aconsequenceofN , writtenN |= o≻ o′,
iff o≻ o′ holds in all preference orderings consistent with the ceteris paribus pref-
erence statements encoded by the CPTs ofN .
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The set of consequenceso ≻ o′ of a CP-net constitutes a partial ordering over
outcomes:o is preferred too′ in this ordering iffN |= o≻ o′. This partial ordering
can be represented by a directed graph, referred to as the induced preference graph:

1. The nodes of the induced preference graph correspond to the complete as-
signments to the variables of the network, and

2. there is an edge from nodeo to nodeo′ if and only if the assignments ato
ando′ differ only in the value of a single variableX, and given the values
assigned byo ando′ to Pa(X), the value assigned byo to X is preferred to
the value assigned byo′ to X8.

In turn, the transitive closure of this graph specifies the partial orderingover out-
comes induced by the CP-net. More precisely, we have thatN |= o≻ o′ if and only
if there is a directed path fromo to o′ in the induced preference graph ofN .

Formally, the induced preference relation ofN , represented by the induced prefer-
ence graph, is defined as follows:

Definition 14 (Induced preference relation)
Thepreference relationover outcomes induced by a CP-netN is denoted by≻N ,
and defined by∀o,o′ ∈ 2V , o≻N o′ if and only ifN |= o≻ o′.

Informally, a CP-netN is satisfied by≻ if ≻ satisfies each of the conditional
preferences expressed in the CPTs ofN under theceteris paribusinterpretation.

Definition 15 (Satisfiability of a CP-net)
A CP-netN is satisfiableiff there is some ranking≻ such that∀o,N 6|= o≻ . . .≻
o.

Example 9, continued: The following figure shows the preference graph over
outcomes induced by this CP-net. The bottom element (Sv∧Ww) is the worst out-
come while the top element (Sf ∧Ww) is the best.

Sv∧Ww

Sv∧Wr

Sf ∧Wr

Sf ∧Ww

We can totally order the outcomes:(Sf ∧Ww)≻ (Sf ∧Wr)≻ (Sv∧Wr)≻ (Sv∧Ww).
This relation≻ is the only ranking that satisfies this CP-net.

8In [6, 7], the arrows are oriented from less preferred to more preferred, but we choose here the
opposite representation in order to stick with the other graphical representations used in this paper.
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5.2 CP-Boolean games

Definition 16 (CP-Boolean games)
A CP-Boolean gameis a 4-uple G= (N,V,π,Φ), where N= {1, . . . ,n} is a set of
players, V= {x1, . . . ,xp} is a set of propositional variables,π : N 7→V is a control
assignment function, andΦ = 〈N1, . . . ,Nn〉. EachNi is a CP-net on V, and∀i ∈N,
�i=�Ni

.

Each CP-netNi is a compact representation of the preference relation of playeri
onS.

Example 10 G = (N,V,π,Φ) where N= {1,2}, V = {a,b,c}, π1 = {a,b}, π2 =
{c}, N1 andN2, as well as�1=�N1

and�2=�N2
, are represented on the follow-

ing figure.
Arrows are oriented from more preferred to less preferred strategy profiles; we do
not draw edges that are obtained from others by transitivity; and the dotted arrows
indicate the links taken into account in order to compute Nash equilibria.

A

B

C

a≻ a

b≻ b

a∧b c≻ c

a∧b c≻ c

a∧b c≻ c

a∧b c≻ c

N1

abc

abc

abc

abc

abc

abc

abc

abc

�1

A

B

C

a≻ a

a b≻ b

a b≻ b

b c≻ c

b c≻ c

N2

abc

abc

abc

abc

abc

abc

abc

abc

�2

Using these partial pre-orders, Nash equilibria are: NEs = NEw = {abc}.

Consider now the CP-netN2 of player 2. Only two rankings satisfy this network:

abc≻2 abc≻2 abc≻2 abc≻2 abc≻2 abc≻2 abc≻2 abc

abc≻2 abc≻2 abc≻2 abc≻2 abc≻2 abc≻2 abc≻2 abc

Notice that we haveN2 |= abc≻2 abc, butN2 6|= abc≻2 abc.
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In [8] it was shown that, given a CP-netN , we can easily determine the best
outcome (or one of the nondominated outcomes, if the best outcome is not unique)
among those preference rankings that satisfyN . In our framework, a best outcome
is a strategy profile which is preferred in a CP-netN in every preference ordering
that satisfiesN .

Definition 17 (Best outcome)
LetN be a CP-net over the set of variables V.
A strategy profile s is abest outcome ofN if and only if∀s′ ∈ S,N |= s≻ s′.

Determining the best outcome, or one of the nondominated outcomes, among the
preference rankings that satisfyN is calledoutcome optimization. If N is acyclic,
the network does not generally determine a unique ranking but determines aunique
best outcome.
This query can be answered using theforward sweepprocedure, taking time linear
in the network size [8, 6]. This procedure consists in instantiating variablesfol-
lowing an order compatible with the graph, choosing for each variable its preferred
value given the value of the parents.

Lemma 1 [8]
LetN be an acyclic CP-net over the set of variables V. The forward sweep proce-
dure constructs the best outcome in S.

Since indifferences are not allowed, strictly and weakly dominated strategies are
the same.

Proposition 10 Let G be a CP-Boolean game such that the graphGi for the player
i is acyclic.

• i has adominated strategyif and only if there is a variable controlled by i
and independent (for�i) from all other variables, i.e. if and only if there is
a variable v∈ πi such that Pa(v) could be simplified to Pa(v) = ∅ without
changing preferences.9

Moreover, in this case, si dominates s′i if and only if si [v]≻i s′i [v], where si [v]
denotes the value of v in the strategy10 si .

• i has adominant strategy, that is a strategy which dominates all the others,
if and only if every variable controlled by i is independent (for�i) from all
other variables, i.e. if and only if for all variables v∈ πi , Pa(v)⊆ πi .

9A variablew could appear in the parents of another variablev without having an influence on
the preferences onv: we could havew∈ Pa(v) without v depending onw. We consider here thatv
depends onw if and only if w∈ Pa(v) (otherwise we removew in Pa(v)).

10So,i prefers the value ofv in si over the value ofv in s′i .
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If Gi is not acyclic,i can have a dominated strategy even if there is nov∈ πi such
thatPa(v) = ∅.

Example 11 G= (N,V,π,Φ) where N= {1,2}, V = {a,b,c,d}, π1 = {a,b}, π2 =
{c,d}, N1 andN2 are represented on the following figure.

A

B

C

D

c≻ c

d≻ d
a b≻ b

a b≻ b

b a≻ a

b a≻ a

N1

A

B

C

D

a≻ a

b≻ b

d c≻ c

d c≻ c

c d≻ d

c d≻ d

N2

For player 1, strategy ab dominates all other strategies, even if Pa(a) = b and
Pa(b) = a.
In N1, the configuration of a and b, controlled by player1, is the same as the
configuration of c and d inN2, which are controlled by2. However,2 has no
dominated strategies.

The previous example shows that cycles in a CP-netN can lead to an inconsistency
in the associated preference relation≻N . In this case, our results can be applied.11

The following lemma introduces the notion of best response, useful for character-
izing Nash equilibria in CP-Boolean games.

Lemma 2 Let G= (N,V,π,Φ) be a CP-Boolean game such that the graphsGi are
all acyclic, and i∈ N. For all s−i ∈ 2V\πi there exists a best response for i, that is,
a strategy s∗i ∈ 2πi such that for all s′i 6= s∗i , (s∗i ,s−i)≻i (s′i ,s−i).

Notice thats∗i depends only ons−i , thereforer i(s−i) will denote the best response
by i to s−i . Then:

Lemma 3 s is a SPNE if and only if for each i, si = r i(s−i).

These two lemmas allow us to show the following propositions:

11If we want to generalize our results to cyclic CP-net, it is possible to take the semantics intro-
duced by [9], which coincides with the standard semantics when≻N is consistent. In Brafman and
Dimopoulos semantics, the preferences expressed in the CPT of a CP-net areweak. They defined
o≻ o′ aso� o′ ando′ � o.
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Proposition 11 Let G= (N,V,π,Φ) be a CP-Boolean game such that the graphs
Gi are all acyclic. Deciding whether a given strategy profile s is a SPNE of G is
polynomial.

Proposition 12
In a CP-Boolean game where the graph associated to each player’s CP-net is
acyclic, SPNE and WPNE coincide.

If the graphs are not all acyclic, that is, if there is at least one player whose graph
is cyclic, this property is no longer guaranteed, and we can have a WPNE which is
not a SPNE:

Example 12 Let G= (N,V,π,Φ) be a CP-Boolean game, with N= {1,2}, V =
{a,b}, π1 = {a}, π2 = {b}. Players’ preferences are represented on the following
figure.

B

A

a b≻ b

a b≻ b

b a≻ a

b a≻ a

Player1

B

A a≻ a

b≻ b

Player2

Using these partial pre-orders, Nash equilibria are: NEs = ∅, NEw = {ab,ab}.

Consequently, in the following we will talk of PNEs (instead of SPNEs and WP-
NEs) as soon as the graph associated to each player’s CP-net is acyclic.
The second property concerns a very interesting case where the existence and the
uniqueness of PNE hold:

Proposition 13
Let G= (N,V,π,Φ) be a CP-Boolean game such that the graphsGi are all identical
(∀i, j, Gi = G j ) and acyclic. Then G has one and only one PNE.

If the graphs are all acyclic but not identical, that is, if there are two players whose
graphs differ over at least one edge, neither existence nor uniqueness are guaran-
teed:

Example 13 Let G= (N,V,π,Φ) be a CP-Boolean game, with N= {1,2,3}, V =
{a,b,c}, π1 = {a}, π2 = {b}, π3 = {c}. Players’ preferences are represented in
the following figure.
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A

C

B

c≻ c

a≻ a

a b≻ b

a b≻ b

N1

A C

B

a≻ a c≻ c

a∧c b≻ b

a∧c b≻ b

a∧c b≻ b

a∧c b≻ b
N2

A B

C

a≻ a b≻ b

a∧b c≻ c

a∧b c≻ c

a∧b c≻ c

a∧b c≻ c
N3

G has no PNE.

Example 14 Let G= (N,V,π,Φ) be a CP-Boolean game, with N= {1,2}, V =
{a,b}, π1 = {a}, π2 = {b}. Players’ preferences are represented on the following
figure.

B

A

b≻ b

b a≻ a

b a≻ a

Player1

B

A a≻ a

a b≻ b

a b≻ b

Player2

This game has2 PNEs: NE= {ab,ab}

The point is that in general the graphsGi for i ∈ {1, . . . ,n} may not be identical.
However, they may bemadeidentical, once it is noticed that a CP-net〈G ,T 〉 can
be expressed by a CP-net〈G ′,T ′〉 as soon as the set of edges inG is contained in
the set of edges inG ′. We may then take as a common graphG (to all players) the
graph whose set of edges is theunionof the set of edges ofG1, . . . ,Gn. The only
problem is that the resulting graph may not be acyclic, in which case Proposition
13 is not applicable. Formally:

Definition 18 (Union graph)
Let G= (N,V,π,Φ) be a CP-Boolean game. For each player i,Gi is denoted by
(V,Edgei), with Edgei being the set of edges of i’s CP-net. Theunion graph of G
is defined byG = (V,Edge1∪ . . .∪Edgen).
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We now define the normalized game equivalent toG, which is the game obtained
from G by rewriting each player’s preferences: the graph of each player’sCP-
net are replaced by the graph of the union of CP-nets ofG and the CPTs of each
player’s CP-net are modified in order to fit with the new graph, keeping thesame
preferences.

Definition 19 (Normalized game)
Let G= (N,V,π,Φ) be a CP-Boolean game and letG be the union graph of G.
Thenormalized game equivalent toG, denoted by G∗ = (N,V,π,Φ∗), is the game
such that

• for each player i,G∗i = G and,

• if ≻y
i denotes the relation associated with CPTi(y) for player i’s CP-net in

G, then we have for G∗: ∀x∈V such that x is a parent of y in G∗ but not in
G,≻y

i,x=≻
y
i,x=≻

y
i ).

The following lemma is straightforward:

Lemma 4
Let G be a CP-Boolean game and G∗ its equivalent normalized game. Then G∗

and G define the same preference relations on strategy profiles.

Therefore, ifG∗ is acyclic, then Proposition 13 applies, andG∗ has one and only
one PNE. Now, sinceG andG∗ define the same pre-orders onS, the latter is also
the only PNE ofG (on the other hand, if the graph ofG∗ is cyclic, neither the
uniqueness nor the existence of PNEs is guaranted, as you can see on Examples 13
and 14).

Proposition 14
Let G= (N,V,π,Φ) be a CP-Boolean game. If the union graph of G is acyclic then
G has one and only one PNE.

Example 10, continued: Players’ preferences in the normalized game G∗ (equiv-
alent to G) are represented by the CP-nets given on the following figure.
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A B

C

a≻ a
a b≻ b

a b≻ b

a∧b c≻ c

a∧b c≻ c

a∧b c≻ c

a∧b c≻ c

N1

A B

C

a≻ a
a b≻ b

a b≻ b

a∧b c≻ c

a∧b c≻ c

a∧b c≻ c

a∧b c≻ c

N2

The union graph is acyclic, therefore Proposition 13 can be applied and G has one
and only one PNE (abc).
>From Proposition 11, we know that ifG is a CP-Boolean game such that the union
graph is acyclic, then deciding whether a given strategy profiles is a PNE ofG is
polynomial.

There is a last condition (less interesting in practice because it is quite strong)
guaranteeing the existence and the uniqueness of a PNE. This condition states that
any variable controlled by an agent is preferentially independent from variables
controlled by other agents (in other words, the parents of any variable controlled
by a playeri are also controlled byi), and that the graphs of players’ CP-nets
are all acyclic. In this case, each agent is able to instantiate her variables inan
unambiguously optimal way, according to her preferences.

Proposition 15
Let G= (N,V,π,Φ) be a CP-Boolean game such that all graphs are acyclic and
for every player i∈ N, for every v∈ πi , we have Pa(v) ∈ πi . Then G has one and
only one PNE.

In the framework of CP-Boolean games, each agent’s preferences are represented
by a CP-net. Yet, to compute Nash equilibria, we are only interested in variables
controlled by a player on her CP-net. The idea here is to introduce a new CP-net,
called theglobal CP-net of G, unique for the set of players, gathering for each
player the set of variables she controls12. Since{π1, . . . ,πn} forms a partition of
V, each variable will be present once and only once in this CP-net. Workingon a
unique CP-net will allow us to use classical tools from the CP-net framework.

12As pointed out by a referee, this construction can be viewed as a form ofpreference aggregation,
where every player is a dictator for the variables she controls. The collective preference relation is
well-defined only when the global CP-net is consistent, therefore this aggregation function applies
only to a specific family of preference profiles and not all possible preference profiles, which explains
why it escapes Arrow’s theorem. See Section 4 of [28] for more detailson this issue.
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Definition 20 (global CP-net)
Let G= (N,V,π,Φ) be a CP-Boolean game.
Theglobal CP-net ofG denotes the CP-netN + = 〈G+,T +〉 such that:

• ∀i ∈ N, ∀v∈ πi , CPTi(v) ∈ T +.

• G+ = 〈V,Edge+1 ∪ . . .∪Edge+n 〉, with eachEdge+i defined by

Edge+i = {(w,v) ∈ Edgei |v∈ πi}

whereEdgei is the set of edges inGi .

Example 15 Consider the same CP-Boolean game as in Example 10:
G = (N,V,π,Φ) where N= {1,2}, V = {a,b,c}, π1 = {a,b}, π2 = {c}, N1 and
N2 are represented on the following figure. On the figure, each box containsthe
variables controlled by the player concerned, therefore it contains the CPTs of the
global CP-net of G.

A

B

C

a≻ a

b≻ b

a∧b c≻ c

a∧b c≻ c

a∧b c≻ c

a∧b c≻ c

N1

A

B

C

a≻ a

a b≻ b

a b≻ b

b c≻ c

b c≻ c

N2

The global CP-netN + of G is represented on the following figure (we keep the
boxes, the edges entering in each box, and the internal edges of each box).
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A

B

C

b≻ b

a≻ a

b c≻ c

b c≻ c

abc

abc abc

abc

abc abc

abc

abc

Since computing the global CP-net of a game allows us to have a unique CP-net,
computing the best outcome of this CP-net, if it is acyclic, can give us interesting
results.

Proposition 16 13

Let G be a CP-Boolean game such that the graphsGi are all acyclic andN + be
the global CP-net of G. Let s be a strategy profile. IfN + is an acyclic CP-net, we
have the following equivalence:
s is a PNE of G if and only if s is the best outcome ofN +.

To prove this proposition, we will need the following lemma :

Lemma 5
Let G be a CP-Boolean game,N be an acyclic CP-net of G, and s be a strategy
profile.
If ∃s′: s′ ≻ s, then∃s′′: s′′ ≻ s such that s and s′′ differ from only one variable.

This proposition allows us to compute more easily the PNE of a CP-Boolean game,
using the “forward sweep” procedure.

Example 15, continued: G has one and only one PNE: abc.
And the global CP-netN + has one best outcome: abc.

Proposition 17
Deciding whether an acyclic CP-Boolean game G= (N,V,π,Φ) (i.e., where each
CP-netNi ∈ Φ is acyclic) has a PNE isNP-complete. Hardness holds even if the
number of players is restricted to2.

The complexity of the problem of deciding if a general CP-Boolean game hasa
PNE is still open.

13Thanks to Nic Wilson for pointing this to us.
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6 Related work

The related work section is structured in the following way. First we discussa
few previous works on the representation of static games in propositional logic
formalisms and give computational characterizations of Nash equilibria. Then we
discuss work which relates CP-nets to pure-strategy Nash equilibria. Finally, we
compare Boolean games to other frameworks for the compact representation of
games, especially graphical games.14

6.1 Expressing static games in propositional logic

In [16], a game in normal form is mapped into alogic program with ordered dis-
junction(LPOD) where each player owns a set of clauses that encodes the player’s
preference over her possible actions given every possible strategy profile of other
players. It is then shown that pure-strategy Nash equilibria correspond exactly to
the most preferred answer sets. The given translation suffers from alimitation,
namely its size: the size of the LPOD is the same as that of the normal form of the
game (since each player needs a number of clauses equal to the number ofpossible
other strategy profiles for other players). However, this limitation is due to theway
LPODs are induced from games and could be overwhelmed by allowing to express
the players’ preferences by any LPOD (in the same spirit as our Section 5).
In [13], a strategic game is represented using achoice logic program, where a set of
rules expresses that a player will select a “best response” given theother players’
choices. Then, for every strategic game, there exists a choice logic program such
that the set of stable models of the program coincides with the set of Nash equilibria
of the game. This property provides a systematic method for computing Nash
equilibria for finite strategic games.
An earlier work [37] uses logic programming as well for specifying games:the
independent choice logicrepresents games (possibly dynamic and under incom-
plete knowledge) using a logic program to model the agent and the environment
and allows for expressing Nash equilibria as well as other solution concepts.

6.2 Games and CP-nets

In Apt et al [1], CP-nets are viewed as games in normal form and vice versa. Each
player i corresponds to a variableXi of the CP-net, whose domainD(Xi) is the
set of actions available to the player. Preferences over a player’s actions given the

14We do not discuss previous papers on Boolean games [23, 22, 14] in this section. They are
obviously related to our work (this is a euphemism...) but they have beendiscussed in Sections 3 and
4.
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other players’ strategies are then expressed in a conditional preference table. The
CP-net expression of the game can sometimes be more compact than its normal
form explicit representation, provided that some players’ preferences depend only
on the actions of a subset of other players. A first important differencewith our
framework is that we allow players to control an arbitrary set of variables, and thus
we do not view players as variables; the only way of expressing in a CP-net that a
player controls several variables would consist in introducing a new variable whose
domain would be the set of all combination of values for these variables—andthe
size of the CP-net would then be exponential in the number of variables. A second
important difference, which holds as well for the comparison with [16] and[13],
is that players can express arbitrary binary preferences, including extreme cases
where the satisfaction of a player’s goal may depend only on variables controlled
by other players. A last (less technical and more foundational) difference with both
lines of work, which actually explains the first two above, is that we do notmap
normal form games into anything but weexpressgames using a logical language.

6.3 Other classes of compactly represented games

In the last few years a lot of work has been done on defining compact representation
languages for games and studying the computation of Nash equilibria given a
compact representation of a game. Boolean games and CP-Boolean games are
just two families of compactly represented games, which relate to other classesof
compactly represented games but are significantly different, as we will see.
The closest framework to the two models developed in this paper is that ofgraph-
ical games. A graphical game specifies, for each playeri, the set of all players
that have an influence oni (which is represented by a directed graph on the set of
players, where an edge fromi to j means that the utility ofi depends on the action
chosen byj). Then, the utility of playeri is compactly represented by autility
tablethat specifies a value for each combination of actions of the players on which
i depends. This graphical representation for games has been independently pro-
posed by [25] and [26]15. The complexity of the existence of pure-strategy Nash
equilibria in graphical games was extensively studied in [20]; these resultswere
strengthened in [15].
One may wonder whether Boolean games are just a specific case of graphical
games (restricted to dichotomous preferences). This is actually not the case, be-
cause there is no polynomial-size translation of propositional formulae into utility
tables, which implies that even the simple propositional preference representation

15The latter framework, calledmulti-agent influence diagrams(MAIDs), also allows for dynam-
icity and incomplete knowledge.
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framework used in Section 3 can sometimes be exponentially more compact than
a representation by utility tables.16

The next example gives a family of Boolean games that are represented in space
polynomial in the number of players, and whose graphical representationis expo-
nential in the number of agents.

Example 16 For every number of players n≥ 0, let Gn = (N,V,π,Φ) be a Boolean
game, with N= {1,2, . . .n}, V = {C1, . . . ,Cn}, for all i ∈ n, πi = {Ci} and for all
i ∈ n, ϕi = Ci ↔ (

V

j<i¬Cj ∧
V

k>i Ck).17

In the graphical representation of Gn, first notice that the utility of each agent
depends on the actions ofall other agents, which implies that the dependency graph
between agents is complete, and the utility tables are exponentially large (for the
sake of illustration, we give the utility table when n= 3):

C1 C2 C3

u1 u2 u3

Utility tables:

Strategy profiles u1 u2 u3

C1C2C3 1 0 0

C1C2C3 0 0 1

C1C2C3 0 1 0

C1C2C3 0 1 1

C1C2C3 0 1 0

C1C2C3 1 0 1

C1C2C3 1 0 1

C1C2C3 1 1 0

16More precisely, the representation of utility functions by sum of local utilities,each of which
being expressed by utility tables, is polynomial if and only if there exists a constantK bounding the
number of variables involved in each table,i.e., if and only if players’ utilities are allK-additive.
Now, the utility functions expressable by means of propositional formulaeareK-additive if and only
if the size of the formulas used in the representation is bounded byK (see for instance [10]).

17With the following convention: for every formulaΨ,
V

x∈D Ψx =⊤ if D = ∅.
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Notice that the representation of utilities remains exponentially large in n even if
the utilities are represented by decision trees instead of tables; for example,for
player1:

1 0

0

0 1

1

C1 C1

C2 C2

C3 C3

C2 C2

C3 C3

Comparing graphical games and CP-Boolean games is less easy, becausegraphi-
cal games are tailored for numerical preferences whereas CP-Boolean games are
tailored for ordinal preferences (where the preference relation induced by a CP-net
may not be complete). However, we want to stress the informal proximity between
both frameworks: CP-nets are the most well-known graphical model for ordinal
preferences, therefore CP-Boolean games can be viewed as the ordinal counterpart
of graphical games.18

A specificity of Boolean games (and CP-Boolean games) is that a player may be
able to control several variables. Of course, Boolean games can be translated in
such a way that each player controls a single variable: if playeri controls a set of
variablesπi , we consider a new variablevi whose domain is 2πi . But this trans-
lation is clearly exponentially large. Another idea would consist in duplicating a
player controllingp variables intop different players with identical preferences;
clearly, the game obtained would be very different from the initial game, because
the duplicated players cannot coordinate when choosing their actions.

Another difference between Boolean games and graphical games is that Boolean
games allow only for binary variables. This is not really a loss of generality,be-
cause it is well-known that eachp-ary variable can be expressed by⌈logp⌉ binary
variables.

Another class of compactly-represented games is that ofcircuit games[38], where
the utility of each player is represented by a Boolean circuit computing the pay-
offs. Because any propositional formula can be translated into a polynomial-size
Boolean circuit, circuit games are more succinct than Boolean games. Unsurpris-

18Another graphical framework for numerical utilities is that of G-nets [27], whose goal is rather
to represent causality relations in a graphical way and therefore is rather far from Boolean games.
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ingly, deciding the existence of a pure Nash equilibrium in a circuit game isΣp
2-

complete (Theorem 6.1 in [38]).

Lastly, local-effect games and action-graph games [31, 2], which are dedicated to
classes of games where players may share some actions and the utility of a player
depends only on the number of players who choose each action, are muchfurther
from Boolean games (and CP-Boolean games).

6.4 Controllability in propositional logic

In Section 3.1 we mentioned a relationship to propositional controllability, as stud-
ied by [5] and [30]. A recent line of work within this alley [40] studies a coopera-
tion logic in which each agent is assumed to control a set of propositional variables.
While we focus on preferences and solution concepts, [40] focus on the effective
power of agents, that is, they reason about the state of affairs that a group of agents
can bring about.

7 Conclusion

In this paper we extended Boolean games to an arbitrary number of playersand
to arbitrary Boolean goals. Extended Boolean games are a first step towards a
more general framework for expressing and reasoning with interacting agents when
the set of strategy profiles has a combinatorial structure. Once this framework
has been defined, extending it so as to allow for more general preferences does
not present any particular difficulty: the definition remains unchangedexceptthe
agents’ goalsϕ1, . . . ,ϕn, which are replaced by more complex structures, expressed
within logical languages for compact representation. These frameworksallow for
representing compactly eithernumericalpreferences (utility functions on 2V) or
ordinal preferences (partial or complete orderings on 2V). Here, we focused on a
specific representation language, namely CP-nets. Our conference paper [3] also
includes an extension of Boolean games with prioritized goals (evoked herevery
briefly in Section 4.3).

Boolean games can be seen as the logical counterpart of graphical games. In this
setting, our results show the impact of the structure of players’ preferences on the
properties of the game (e.g., existence of pure-strategy Nash equilibria) and on the
computational complexity of some specific problems. In particular, Proposition
14 shows that if the players’ preferences share enough preferential independence
properties, then the existence and the uniqueness of a pure-strategy Nash equilib-
rium is guaranteed and that the latter can be computed in polynomial time.
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Two extensions to our work should not present any particular difficulty (we omit-
ted them for the sake of simplicity). First, extending Boolean games so as to han-
dle variables with nonbinary domains, by the usual way of binarizing nonbinary
variables. Second, adding constraints restricting the set of individual strategies as
suggested in Section 3.
On the contrary, some other extensions demand much more additional work and
are left for further research:

• in Section 3.2 we characterized dominated strategies in Boolean games;
however, we did not investigate complexity issues for the iterative elimi-
nation of dominated strategies19.

• integrating Boolean games with languages for representing numerical pref-
erences (for instance using sets of weighted formulas, e.g. as in [10]),and for
addressing the computation of mixed-strategy Nash equilibria in this setting.

• defining and studying dynamic extensions of Boolean games, as well as al-
lowing for incomplete knowledge states.

Yet another interesting issue for further research stems from the observation that is
often unnatural to require players to express preference relations over strategy pro-
files. Rather, they have natural preferences over a space ofpossible outcomes, and
each strategy profile is then mapped to an outcome. Expressing preferences over
outcomes rather than strategy profiles is not only more natural in many cases, but
it may also make the description of players’ preference much more succinct,since
there might generally be far less outcomes than strategy profiles. The pointthat de-
serves then some attention is how the mapping from strategy profiles to outcomes
can be described succinctly; this can be done for instance using a propositional
language for concurrent actions, such asC [18].
We end this paper by some positioning with respect to a large stream of work that
aims at bridging logic and games (see for instance [39]). We remark that in Boolean
games logic plays a role only in the description of the players’ preferences, but the
control function remains extralogical. We could think of “modalizing” Boolean
games, which can be done in many ways. First, we could modalize preferences, by
expressing preferences directly in the language as in modal logics of preferences
(e.g. [21]). Then, we may also want to modalize the “control” component of

19For games represented in normal form, deciding whether there is somepath that eliminates a
given strategy is polynomial with strict dominance andNP-complete with weak dominance [19, 11].
We are not aware of any extension of these results to compactly represented games.
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Boolean games; this could be done for instance by expressing the controlfunction
π using group ability modalities [40].20
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A Proofs

Proposition 1
Let G= (N,V,π,Φ) be a Boolean game. Player i∈ N has a winning strategy iff
PIπi (ϕi) 6= ∅.

Proof:
Intuitively, if a player’s goal has a prime implicantα in which all the variables are
controlled by this player, then she has a winning strategy. Indeed, this termα can
be satisfied, hence the goal which contains it is also satisfied, and the player wins.

• If PIπi (ϕi) 6= ∅, then∃α ∈ 2V such that:α |= ϕi andVar(α)⊆ πi .

So, asi controls all variables inα, i has a strategysi ∈ 2πi such thatsi |= α.
Then,∀s−i ∈ 2π−i (s−i ,si) |= ϕi .

• According to Definition 3,i has a winning strategy iff:

∃si ∈ 2πi ,∀s−i ∈ 2π−i (s−i ,si) |= ϕi

So, playeri can satisfy her goal whatever the choices of her opponents.
Therefore, there existsα ∈ 2πi such that:α |= ϕi andVar(α)⊆ πi , i.e.,α is a
πi-implicant ofϕi . Thus there exists aπi-prime implicantα′ of ϕi . Therefore
PIπi (ϕi) 6= ∅.

�

Proposition 2
Let G= (N,V,π,Φ) be a Boolean game and let s∈ 2V . s is a pure-strategy Nash
equilibrium for G iff for all i∈ N, s 6|= ϕi implies s−i |= ¬ϕi .

Proof: s is a PNE forG iff
∀i ∈N,∀s′i ∈ 2πi ,ui(s)≥ ui(s−i ,s′i), i.e.,∀i ∈N,∀s′i ∈ 2πi ,ui(s) = 1 orui(s−i ,s′i) = 0,
i.e.,∀i ∈ N, ui(s) = 1 or∀s′i ∈ 2πi ,ui(s−i ,s′i) = 0.
Finally, ui(s) = 1⇔ s |= ϕi , and∀s′i ∈ 2πi ,ui(s−i ,s′i) = 0⇔ ∀s′i ∈ 2πi , (s−i ,s′i) |=
¬ϕi , i.e.,s−i |= ¬ϕi .
So, we haves |= ϕi or s−i |= ¬ϕi , that iss 6|= ϕi impliess−i |= ¬ϕi . �

Proposition 3
Let s∈ 2V . s is a pure-strategy Nash equilibrium for G if and only if s|=

V

i(ϕi ∨
(¬∃i : ϕi)).
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Proof: We have the following chain of equivalences:s−i |= ¬ϕi ⇔ s−i |= ¬∃i : ϕi

⇔ (si ,s−i) |= ¬∃i : ϕi (because variables controlled by playeri have disappeared
from¬∃i : ϕi)⇔ s |= ¬∃i : ϕi . Putting everything together, we get:(∀i ∈N,s |= ϕi

or s−i |= ¬ϕi)⇔ (∀i ∈ N,s |= ϕi or s |= ¬∃i : ϕi)⇔ ∀i ∈ N,s |= ϕi ∨ (¬∃i : ϕi)⇔
s |=

V

i(ϕi ∨ (¬∃i : ϕi)).
�

Proposition 4
If G is a 2-player zero-sum Boolean game, s= (s1,s2) is a pure-strategy Nash
equilibrium iff s1 is a winning strategy for1 or s2 is a winning strategy for2.

Proof: Let s= (s1,s2) be a PNE. Assumeu1(s) = 1 (the caseu2(s) = 1 is symmet-
ric). SinceG is zero-sum, we haveu2(s) = 0. Now sinces is a PNE,∀s′2,u2(s) ≥
u2(s1,s′2), which entails∀s′2,u2(s1,s′2) = 0. It follows ∀s′2,(s1,s′2) |= ¬ϕ2, which
entails that∀s′2,(s1,s′2) |= ϕ1. Thuss1 is a winning strategy for 1.
Conversely, assume thats1 is a winning strategy for 1 (the case of 2 is symmetric).
Then we have∀s2,u1(s1,s2) = 1 and∀s2,u2(s1,s2) = 0. Let s = (s1,s2) where
s2 ∈ 2π2. We have∀s′1,u1(s) ≥ u1(s′1,s2) and∀s′2,u2(s) ≥ u2(s1,s′2). Thuss is a
PNE.

�

Proposition 5
Deciding whether there is a pure-strategy Nash equilibrium in a Boolean game is
Σp

2-complete. Completeness holds even under the restriction to 2-player zero-sum
games.

Proof: Membership inΣp
2 comes from the following algorithm. Guess a strategy

profile and check that no player has a better strategy. This is as many checks
as players, and each check is the complement of guessing a better strategyand
deciding whether it is better by evaluating the player’s goal in the new strategy
profile. Thus each check is in coNP, hence checking a strategy profile can be done
by a polynomial number of calls to a coNP oracle (one for each player), hence
deciding whether there is one is inNPcoNP= ΣP

2 .
Hardness is obtained by a reduction from the problem of deciding the validityof a
QBF2,∃. GivenQ = ∃A,∀B,Φ, whereA andB are disjoint sets of variables andΦ is
a formula ofLA∪B, we define a 2-player zero-sum Boolean game byϕ1 = Φ∨(x↔
y), wherex,y are new variables (x,y 6∈ A∪B) andπ1 = A∪{x}. Obviously, this
game can be built in polynomial time givenQ.
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Clearly, if Q is valid with MA ∈ 2A as a witness, then both(MA,x) and(MA,x) are
winning strategies for 1. Conversely, ifQ is not valid, then whateverMA ∈ 2A 1
plays, 2 can playMB ∈ 2B such that(MA,MB) 6|= Φ, and 2 can playy (resp. y)
if 1 plays x (resp. x), resulting in both cases in 2 winning (so, 1 has no winning
strategy). Now it is easily seen that 2 has no winning strategy. Finally, thereis a
winning strategy for 1 (or 2, vacuously) if and only ifQ is valid, and Proposition 4
concludes.

�

Proposition 6
Let G be a Boolean game. If the goalϕi of every player is in DNF, then deciding
whether there is a pure-strategy Nash equilibrium is NP-complete. Completeness
holds even if we restrict the number of players to2.

Proof: If ϕi is in DNF, then∃i : ϕi can be computed in linear time [29, Proposi-
tions 17–18]. Thus if everyϕi is in DNF, a formulaψ≡

V

i(ϕi ∨ (¬∃i : ϕi)) can be
computed in linear time. By Proposition 3 it is enough to guess a strategy profiles
and checks |= ψ, thus the problem is in NP.
As for hardness, we give a reduction from (the complement of) the problem of
deciding whether a DNFΦ =

Wk
i=1Ti is tautological, a well-knowncoNP-complete

problem. WriteX for the set of variables ofΦ and letx,y /∈ X. Define a 2-player
gameGby ϕ1 =

Wk
i=1(Ti∧x∧¬y)∨(Ti∧¬x∧y), π1 = {y}, ϕ2 = (x∧y)∨(¬x∧¬y),

π2 = X∪{x}. Clearly,G can be built in linear time andϕ1,ϕ2 are in DNF.
Observeϕ1≡Φ∧ (x 6= y) andϕ2≡ (x = y).
By Proposition 3, there is a PNE inG if and only if ((Φ∧ (x 6= y))∨¬Φ)∧ (x = y)
is satisfiable. Indeed: (i) sincey does not occur inΦ we have¬∃y : (Φ∧x 6= y)≡
¬(Φ∧∃y : x 6= y)≡ ¬(Φ∧⊤)≡ ¬Φ, and (ii)¬∃X∪{x} : (x = y)≡⊥.
SinceΦ∧ (x 6= y)∧ (x = y) is unsatisfiable, there is a PNE inG iff ¬Φ∧ (x = y) is
satisfiable, i.e., iff¬Φ is satisfiable sincex andy do not occur inΦ. Finally, there
is a PNE inG iff Φ is not tautological.

�

Proposition 7
Strategy si weakly dominatesstrategy s′i if and only if(ϕi)s′i

|= (ϕi)si and(ϕi)si 6|=
(ϕi)s′i

.

Proof: Strategysi weakly dominatess′i iff (i) ∀s−i ∈ 2π−i ,ui(si ,s−i)≥ ui(s′i ,s−i) and
(ii) ∃s−i ∈ 2π−i ,ui(si ,s−i) > ui(s′i ,s−i).
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Now (i)⇔∀s−i ∈2π−i ,(ui(si ,s−i)= 1 orui(s′i ,s−i)= 0)⇔∀s−i ∈2π−i , if (s′i ,s−i) |=
ϕi then(si ,s−i) |= ϕi ⇔ ∀s−i ∈ 2π−i , if s−i |= (ϕi)s′i

thens−i |= (ϕi)si ⇔ (ϕi)s′i
|=

(ϕi)si .
Finally, (ii)⇔¬(i) if we swapsi ands′i ; thus (ii)⇔ (ϕi)si 6|= (ϕi)s′i

.
�

Proposition 8
Deciding whether a given strategy s′i is weakly dominated isΣp

2-complete. Hard-
ness holds even ifϕi is restricted to be in DNF.

Proof: Membership inΣp
2 comes from the following algorithm. First guess a

candidate strategy. To check whether it weakly dominatess′i , consider every strat-
egy s−i and checkui(si ,s−i) ≥ ui(s′i ,s−i), and guess one for which dominance is
strict. Thus the candidate strategy can be checked with one call to a coNP ora-
cle and one to an NP oracle, hence deciding whethers′i is weakly dominated is in
NPNP∪coNP= ΣP

2 .
Hardness is obtained again by a reduction from the problem of deciding thevalidity
of a QBF2,∃. GivenQ = ∃A,∀B,Φ, let a,b be two new variables, and defineϕ1 =
(a∧Φ)∨ (¬a∧b), π1 = A∪{a}, π2 = B∪{b} (ϕ2 does not matter). LetM′A be
anyA-interpretation ands′1 be(M′A,a). We have(ϕ1)s′1

≡ (b).
AssumeQ is valid with MA ∈ 2A as a witness, and lets1 = (MA,a). Then clearly
s1 is a winning strategy for 1 whereass′1 is not, thuss1 weakly dominatess′1.
Conversely, assumeQ is not valid, and letMA ∈ 2A. Let s1 = (MA,a). Then
(ϕ1)s1 ≡ (b)≡ (ϕ1)s′1

, thus by Proposition 7,s1 does not weakly dominates′1. Now
let s1 = (MA,a). SinceQ is not valid, there isMB ∈ 2B such that(MA,MB) 6|= Φ.
Thus (MB,b) |= (ϕ1)s′1

but (MB,b) 6|= (ϕ1)s1, and by Proposition 7,s1 does not
weakly dominates′1. Finally,s′1 is weakly dominated (bys1) iff Q is valid.
For goals in DNF, just note (i) ifΦ is in DNF then∃A,∀B,Φ is still Σp

2-complete
and (ii) a DNF forϕ1 can be built efficiently.

�

Proposition 9 Let G= (N,V,π,Φ) be a distributed evaluation game and let s∈ S.
If s is a SPNE then for all i∈ N, Sat(s,Σi) is maximal s−i-consistent.

Proof: Assume thats is a SPNE, which means that∀i ∈ N, ∀s′i ∈ 2πi , (s′i ,s−i) �i

(si ,s−i). This is equivalent to∀i ∈N, ∀s′i ∈ 2πi , Sat((s′i ,s−i),Σi)⊆i Sat((si ,s−i),Σi),
which implies that∀i ∈N, 6 ∃s′i ∈ 2πi such thatSat((s′i ,s−i),Σi)⊃i Sat((si ,s−i),Σi).
Therefore,Sat(s,Σi) is maximals−i-consistent.

�
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Proposition 10 Let G be a CP-Boolean game such that the graphGi for the player
i is acyclic.

• i has adominated strategyif and only if there is a variable controlled by i
and independent (for�i) from all other variables, i.e. if and only if there is
a variable v∈ πi such that Pa(v) could be simplified to Pa(v) = ∅ without
changing preferences.
Moreover, in this case, si dominates s′i if and only if si [v]≻i s′i [v], where si [v]
denotes the value of v in the strategy si .

• i has adominant strategy, that is a strategy which dominates all the others,
if and only if every variable controlled by i is independent (for�i) from all
other variables, i.e. if and only if for all variables v∈ πi , Pa(v)⊆ πi .

Proof:

• ⇒ Suppose that∀v∈ πi , Pa(v) 6= ∅. AsGi is acyclic, we know that exists
v∈ πi such thatPa(v) ⊆ π−i . So,∃uv an instantiation of all parents of
v such thatv≻i,uv v, and∃u′v another instantiation of all parents ofv
such thatv≻i,u′v v (otherwise, the graph could be simplified in order
to havePa(v) = ∅). ∀si ∈ 2πi , existss′i ∈ 2πi and existss−i ∈ 2π−i

such that either(si ,s−i) ≺i,uv (s′i ,s−i), or (si ,s−i) ≺i,u′v (s′i ,s−i). i has
no dominated strategies.

⇐ Let i a player, and∃v∈ πi such thatPa(v) = ∅.
So eitherv≻i v or v≻i v. So, strategysi , defined by assigning the best
value tov (i.e. v in the first case) is better fori to all others′i , defined
by assigning the other value tov (i.e. v in the first case). AsPa(v) = ∅,
we know than∀s−i ∈ 2π−i , (si ,s−i)≻i (s′i ,s−i). si dominatess′i , and we
havesi [v]≻i s′i [v].

• ⇒ Suppose that∃v∈ πi , such that∃w∈Pa(v) such thatw 6∈ πi . So,w∈ π−i .
So,∃uv an instantiation of all parents ofv such thatv≻i,uv v, and∃u′v
another instantiation of all parents ofv such thatv≻i,u′v v. ∀si ∈ 2πi ,
existss′i ∈ 2πi and existss−i ∈ 2π−i such that either(si ,s−i)≺i,uv (s′i ,s−i),
or (si ,s−i)≺i,u′v (s′i ,s−i). i has no dominant strategies.

⇐ Let i a player, and∀v∈ πi , Pa(v)⊆ πi .
Let (x1, . . . ,xk) be a topological order onπi with respect toGi . We
define a strategysi as follows.

AsGi is acyclic, by construction we havePa(x1) = ∅, and eitherx1≻i

x1 or x1 ≻i x1. Define strategysx1 as assigning the best value tox1

(i.e.,x1 in the first case andx1 in the second case). This process can be
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iterated along the topological order, since by definition, at any time the
value of each parent of the current variablexi will have been fixed byi.
We thus end up with a strategy profilesi .

We now show thatsi is a dominant strategy. Indeed, assume it is not
one, and let a strategys′i and a strategys−i such that(s′i ,s−i)≻i (si ,s−i).
Let x be the first variable inπi , with respect to the topological or-
der above, such thatsi [x] 6= s′i [x]. Then by construction ofsi we have
si [x] ≻i,ux s′i [x], whereux is the instantiation of all parents ofx. Now
this instantiation is the same in(si ,s−i) and(s′i ,s−i), because we have
chosen the first variable over whichs′i andsi disagree w.r.t. the topolog-
ical order. It follows that replacings′i [x] with si [x] in s′i yields a better
strategy, and iterating this reasoning we end up with showing that re-
placing everys′i [x] with si [x] in s′i yield ever better strategies. Since this
process ends up withsi , we finally have(si ,s−i) ≻i (s′i ,s−i), which to-
gether with the assumption(s′i ,s−i)≻i (si ,s−i) contradicts the fact that
acyclic CP-nets are always satisfiable.

�

Lemma 2
Let G= (N,V,π,Φ) be a CP-Boolean game such that the graphsGi are all acyclic,
and i∈ N. For all s−i ∈ 2π−i there exists a best response for i, that is, a strategy
s∗i ∈ 2πi such that for all s′i 6= s∗i , (s∗i ,s−i)≻i (s′i ,s−i).

Proof: Suppose thats∗i does not exist. So,∃s−i ∈ 2π−i such that∀si ∈ 2πi , ∃s′i 6= si

such that(s′i ,s−i) ≻i (si ,s−i). And, there exists as′′i 6= s′i such that(s′′i ,s−i) ≻i

(s′i ,s−i), and so on. As each agent has a finite number of strategies, and≻i is tran-
sitive,∃si ,s′i ∈ 2πi such that(s′i ,s−i)≻i (si ,s−i), (s′′i ,s−i)≻i (s′i ,s−i) and(si ,s−i)≻i

(s′′i ,s−i), which contradicts the fact thanGi is acyclic.
�

Lemma 3
s is a SPNE if and only if for each i, si = r i(s−i).

Proof:

⇒ Let s= (s1, . . . ,sn) be a SPNE:∀i ∈N, ∀s′i ∈ 2πi , (si ,s−i)�i (s′i ,s−i). But, by
definition of a CP-net, we cannot have egality between two strategy profiles,
so we know that:(si ,s−i) 6=i (s′i ,s−i) if si 6= s′i . Thus, we have∀i ∈ N, ∀s′i 6=
si ∈ 2πi , (si ,s−i)≻i (s′i ,s−i), and then∀i ∈ N, si = r i(s−i).
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⇐ ∀i ∈ N, let si = r i(s−i). So, by definition,∀s′i 6= si ∈ 2πi , (si ,s−i)≻i (s′i ,s−i).
Then, we obviously have∀i ∈ N, ∀s′i ∈ 2πi , (si ,s−i)�i (s′i ,s−i): s is a SPNE.

�

Proposition 11 Let G= (N,V,π,Φ) be a CP-Boolean game such that the graphs
Gi are all acyclic. Deciding whether a given strategy profile s is a SPNE of G is
polynomial.

Proof: From Lemma 3, we know thats is a SPNE if and only if for all playeri, si is
a best response for her. Moreover, Lemma 2 shows than we can efficiently verify
for eachi if si is a best response. Then, deciding ifs is a SPNE is polynomial.

�

Proposition 12
In a CP-Boolean game where the graph associated to each player’s CP-net is
acyclic, SPNE and WPNE coincide.

Proof: It is obvious thatNEs⊆ NEw. Let us verify thanNEw⊆ NEs.
Assume thats is a WPNE but is not a SPNE. Then,∃i ∈ N such thatsi 6= r i(s−i).
But (r i(s−i),s−i)≻i (s′i ,s−i) for all s′i , in particular fors′i = si ; thereforescannot be
a WPNE.

�

Proposition 13
Let G= (N,V,π,Φ) be a CP-Boolean game such that the graphsGi are all identical
(∀i, j, Gi = G j ) and acyclic. Then G has one and only one PNE.

This proof is inspired of theforward sweepprocedure [8, 6] for outcome optimiza-
tion.
Proof:

• Existence:

Let (x1, . . . ,xk) be a topological order onV with respect toGi (for anyi since
all graphs are identical). We define a PNEs= (s1, . . . ,sn) for G as follows.

Let a be the agent controlling variablex1. By construction we havePa(x1) =
∅, and eitherx1 ≻a x1 or x1 ≻a x1. Define strategysa as assigning the best
value tox1 (i.e., x1 in the first case andx1 in the second case). This process
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can be iterated along the topological order, since by definition, at any time
the value of each parent of the current variablexi will have been fixed (by the
same player’s strategy or by another one’s). We thus end up with a strategy
profiles.

We now show thats is a PNE. Indeed, assume it is not one, and let an agent
i and a strategys′i such that(s′i ,s−i)≻i (si ,s−i). Let x be the first variable in
πi , with respect to the topological order above, such thatsi [x] 6= s′i [x]. Then
by construction ofsi we havesi [x]≻i,ux s′i [x], whereux is the instantiation of
all parents ofx. Now this instantiation is the same in(si ,s−i) and(s′i ,s−i),
because we have chosen the first variable over whichs′i andsi disagree w.r.t.
the topological order. It follows that replacings′i [x] with si [x] in s′i yields
a better strategy, and iterating this reasoning we end up with showing that
replacing everys′i [x] with si [x] in s′i yield ever better strategies. Since this
process ends up withsi , we finally have(si ,s−i) ≻i (s′i ,s−i), which together
with the assumption(s′i ,s−i)≻i (si ,s−i) contradicts the fact that acyclic CP-
nets are always satisfiable.

• Uniqueness:
Uniqueness derives easily from the construction above. Indeed, assumeG
has two different Nash equilibria, and let(x1, . . . ,xk) be a topological order
onV with respect to anyGi . Since once this order is fixed, the construction
above is deterministic (resulting in a “canonical” PNEsc), there is at least
one Nash equilibriums for G which is not built according to it. Letx be
the first variable (w.r.t. to the topological order) such thats andsc differ,
and leti be the agent controllingx. Let u be the instantiation of all previous
variables w.r.t. the order. By construction,u is common tos and sc and
instanciates all variables inPa(x). Assumex≻i,u x (the dual case is similar).
Then by construction,sc assignsx to x and thus,s assignsx to it. It follows
that replacingx with x in syields a (strictly) better strategy, contradicting the
assumption thats is a PNE forG.

�

Lemma 4
Let G be a CP-Boolean game and G∗ its equivalent normalized game. Then G∗

and G define the same preference relations on strategy profiles.

Proof: For each playeri ∈N, let�i be the preference relation satisfyingi’s CP-net
for the gameG. We show that�i satisfiesi’s CP-net forG∗.
Two cases are possible∀x∈V:
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1. x has the same parents in CP-nets ofG∗ andG. In this case,�x
i is the same

in G and inG∗ (idem for�x
i ).

2. x has not the same parents in the CP-net ofG∗ as in the CP-net ofG. An
edge has been added, denoted by〈y,x〉. We have thus�x

i,y=�
x
i,y=�

x
i . Thus

this is the same relation.

�

Proposition 14
Let G= (N,V,π,Φ) be a CP-Boolean game such that all graphs are acyclic and
for every player i∈ N, for every v∈ πi , we have Pa(v) ∈ πi . Then G has one and
only one PNE.

The proof of this proposition is also given by the use of the forward sweep proce-
dure, and follows the same scheme as that of Proposition 13.

Proposition 15
Let G be a CP-Boolean game such that the graphsGi are all acyclic, andN + be
the global CP-net of G. Let s be a strategy profile. IfN + is an acyclic CP-net, we
have the following equivalence:
s is a PNE of G if and only if s is a best outcome ofN +.

To prove this proposition, we will need the following lemma :

Lemma 5
Let G be a CP-Boolean game,N be an acyclic CP-net of G, and s be a strategy
profile.
If ∃s′: s′ ≻ s, then∃s′′: s′′ ≻ s such that s and s′′ differ from only one variable.

Proof:
Let s ands′ be two strategy profiles such thats′ ≻ s. We suppose that there is no
s′′ ≻ s such thats ands′′ differ from only one variable: in this case, indifference
being impossible, for all suchs′′ we haves≻ s′′.
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Considers= v1v2 . . .vkvk+1 . . .vp, with v1, . . . ,vp ∈ V, and∀v j ∈ V, let u j denote
the assignment to the parents ofv j . Then, we consider all possibles′′:

s≻ v1v2 . . .vkvk+1 . . .vp ⇒ v1≻u1 v1

s≻ v1v2 . . .vkvk+1 . . .vp ⇒ v2≻u2 v2

...

s≻ v1v2 . . .vkvk+1 . . .vp ⇒ vk ≻uk vk

s≻ v1v2 . . .vkvk+1 . . .vp ⇒ vk+1≻uk+1 vk+1

...

s≻ v1v2 . . .vkvk+1 . . .vp ⇒ vp≻up vp

Thus each variable is instanciated to its best value according to its parents’ instan-
tiation. This assignment corresponds to the “forward sweep” procedure, s is thus
the best outcome ofN according to Lemma 1, which is in contradiction with the
assumption∃s′ such thats′ ≻ s. So∃s′′: s′′ ≻ s such thats ands′′ differ from only
one variable.

�

We can now prove Proposition 16.
Proof:

⇒ Let sbe a PNE ofG. Let us suppose thats is not the best outcome ofN +.

>From Definition 17,∃s′ ∈ Ssuch thatN + 6|= s≻+ s′.
So, there exists a preference relation such thats′ ≻+ s which satisfiesN +.
From Lemma 5, we know that∃s′′ ≻+ s such thats ands′′ differ from only
one variable:∃!v∈V such thatvs′′ ≻

+
u vs, whereu is the assignment insand

s′′ of Pa(v), all others being identical. Leti be the player such thatv ∈ πi .
Then, we have(s′′i ,s−i)≻

+ (si ,s−i). Let us now show what happens forG.

s′′ ≻+ s satisfiesCPT+(v) for all v ∈ V. By construction ofN + from G,
∀i ∈ N, ∀v∈ πi , CPTi(v) = CPT+(v).

Thus fori in G, we havevs′′ ≻i vs, and∀w∈V \{v}, ∀ j ∈N such thatw∈ π j ,
ws′′ = j ws. Then:(s′′i ,s−i)≻i (si ,s−i).

Thus,s is not a PNE, contradiction.

⇐ Let s be the best outcome ofN +. Let us suppose thats is not a PNE.∃i ∈
{1, . . . ,n}, ∃s′i ∈ 2πi such that(s′i ,s−i) ≻i (si ,s−i). Thus,∃W ⊆ πi such that
∀w∈W, ∀p∈ 2Pa(w), ws′ ≻i,p ws, and∀x∈ πi \W, ∀q∈ 2Pa(x), xs′ =i,q xs.
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By construction ofN + from G, ∀i ∈ N, ∀v∈ πi , CPTi(v) = CPT+(v). We
always have∀w∈W, ∀p∈ 2Pa(w), ws′ ≻

+
p ws, and∀x∈ πi \W, ∀q∈ 2Pa(x),

xs′ =
+
q xs. Then(s′i ,s−i)≻

+ (si ,s−i). Sos′ ≻+ s, andN + 6|= s≻+ s′.

Thuss is not a best outcome ofN +. Contradiction.

�

Proposition 16
Deciding whether an acyclic CP-Boolean game G= (N,V,π,Φ) (i.e., where each
CP-netNi ∈ Φ is acyclic) has a PNE isNP-complete. Hardness holds even if the
number of players is restricted to2.

Proof: Thanks to Proposition 11, we know that the problem is inNP. As for
hardness, we give a reduction from the satisfiability problem for CNF formulas in
which every clause contains at most three literals and each variable occurs in at
most three clauses [17, comments for problem LO1].
The intuition behind the reduction is the following. Given a CNF formulaϕ as
above, a player 1 will try to satisfyϕ by assigning values to its variables; more
precisely, he will be happy only if all clauses are satisfied, and otherwisehe will
always prefer flipping the value of at least one variable in the current assignment.
Another player 2 will tag each variablexi with a literal(¬)pi telling whetherxi is
positive or not in 1’s strategy.
The precise construction is as follows. Given a CNF formulaϕ =

Vk
i=1Ci in which

every clause contains at most three literals and each variable occurs in atmost three
clauses, let 1,2 be two players. Let{x1, . . . ,xn} be the set of variables ofϕ. For
each clauseCi of ϕ let γi be a new variable (intuitively meaning thatCi is satisfied).
Finally, for each variablexi occurring inϕ, let pi be a new variable. We build a CP-
Boolean gameG= (N,V,π,Φ) whereN = {1,2}, V = {x1, . . . ,xn}∪{γ1, . . . ,γk}∪
{p1, . . . , pn}, π1 = {x1, . . . ,xn}∪{γ1, . . . ,γk}, andπ2 = {p1, . . . , pn}; the CP-net of
each player is defined below.
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For each variablexi of ϕ, if xi occurs (negated or not) in three clausesCi1,Ci2,Ci3
then the following CP-table is added to 1’s CP-net:

γi1γi2γi3 pi xi ≻ xi

γi1γi2γi3 pi xi ≻ xi

γi1γi2γi3 pi xi ≻ xi

γi1γi2γi3 pi xi ≻ xi

γi1γi2γi3 pi xi ≻ xi

γi1γi2γi3 pi xi ≻ xi

. . .
γi1γi2γi3 pi xi ≻ xi

γi1γi2γi3 pi xi ≻ xi

If xi appears in only one or two clauses, a similar CP-table is added (with only one
or two γ-variables appearing in the table). In other words, 1 prefers to changethe
value ofxi (w.r.t. what 2 reports about that value) as soon as at least one clause
containingxi is not satisfied.
Now for each clauseCi in ϕ, say,Ci = (x1∨¬x2∨¬x3) for the example, the fol-
lowing CP-table is added:

p1p2p3 γi ≻ γi
p1p2p3 γi ≻ γi

. . .
p1p2p3 γi ≻ γi

p1p2p3 γi ≻ γi

In other words, 1 prefersγi as soon asCi is satisfied (by his strategy, as reported by
2) andγi otherwise. It follows that

(1) in any PNE ofG, γi is true if and only if the clauseCi is satisfied

(otherwise 1 would have a better strategy, since 1 controlsγi).
1’s CP-net is then defined to be the set of all these tables together with any pref-
erence on the values ofpi ’s (with no parents). The construction is unambiguous
since only one table is built perxi or γi , and the graph is acyclic since the only
dependencies are fromp j ’s to γi ’s and fromγk’s andp j ’s to xi ’s.
Finally, 2’s CP-net is built as follows. For each variablexi , the following CP-table
is added:

xi pi ≻ pi

xi pi ≻ pi

Obviously, 2’s CP-net is acyclic, and

(2) in any PNE ofG, for all i, pi is true if and only ifxi is true
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(otherwise 2 would have a better strategy, since 2 controlspi).
Now, we have the following:

(3) in any PNE ofG, if for somei Ci is false then there is aj such thatx j ≡ ¬p j .

Indeed, supposeCi is false. Then, by (1),γi is false. Let nowx j be one of the vari-
ables ofCi . The CP-table of 1 attached tox j contains two conditional preference
statements of the formγi(...)p j : x j ≻ x j andγi(...)p j : x j ≻ x j . Becauseγi is false
and 1 controlsx j , in a PNE ofG, x j will have the opposite value of that ofp j .
>From (2) and (3), we get that in a PNE ofG, each clauseCi is satisfied. Therefore,
if G has a PNE thenϕ is satisfiable.
Conversely, assumeϕ is satisfiable and let~x = (x1, . . . ,xn) |= ϕ. Consider the strat-
egy profile forG defined by assigning eachxi as in~x, eachpi asxi , and eachγi to
true. It is easily checked that this strategy profile is a PNE forG. Therefore, ifϕ is
satisfiable thenG has a PNE.
�

Observe that cyclicity in the union graph of the CP-game built in the proof allows
1 to get information on its own variables via 2, and hence to decide to play, e.g.,x3

(x3) if x3 is currently false (true) and a clause containing it is not satisfied; thus her
decisions aboutx3 are partly based on the value ofx3 itself.
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